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Abstract

Scaling, namely the algebraic (power-law) dependence of measured properties on frequency or time is of wide-spread

occurrence in polymeric systems. In this work we highlight its connection to fractional calculus. As examples of systems

that obey scaling, we discuss here linear and fractal generalized Gaussian structures. On the other hand, non-scaling

behavior is also found in many realistic situations. In the second part of the paper we consider as example of non-

scaling behavior the relaxation of small-world networks. Detailed measurements, such as provided by dielectric

spectroscopy or mechanical relaxation can help to determine the basic, mesoscopic properties of the substances under

investigation. � 2002 Elsevier Science B.V. All rights reserved.

PACS: 77.22; 36.40.s; 36.20

1. Introduction

Regular diffusion, better known as Brownian
motion, is characterized (in the absence of di-
rected, external fields) by a linear increase of the
mean-square displacement with time. For anoma-
lous diffusion, a feature of common occurrence in
polymeric systems, as we will recall in the follow-
ing, this simple relation does not hold; the tem-
poral evolution of the mean-square displacement is
non-linear and often obeys at long times

R2ðtÞ � tc ð1Þ
with c 6¼ 1. In the case c < 1 one denotes the be-
havior as subdiffusive. For simply structured par-
ticles (the ideal case being point-like objects) such a
pattern of motion often results from disorder [1–5];
for polymeric materials – which may be envisaged
as being built out of beads (monomers) connected
by springs – the motion of the monomers also
obeys Eq. (1) in the absence of disorder; the reason
for this is due to the relaxation of the internal
modes of the structure [6]. Furthermore, Eq. (1)
is also obeyed during several motional stages in
melts of polymer chains; then one has reptation
[7], and the processes giving rise to disentangle-
ment are characterized by different exponents c in
Eq. (1) [7–9]. In the case c > 1 the motion
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is termed superdiffusive. Classical examples for
superdiffusive behavior are furnished by the mo-
tion of particles in turbulent flows [4,10] and by the
motion of polymers in layered flows [11].

In recent times, besides the classical way of
describing anomalous diffusion via continuous
time random walks (CTRW) and L�eevy-walks
models [1–4,10,12–16], also descriptions based on
fractional derivatives have attracted much interest
[17,18]. In this article we will stress the fact, by
following the developments outlined in Refs.
[19,20], that anomalous diffusion in the scaling
form of Eq. (1) is closely connected to heuristic
descriptions based on fractional derivatives. As we
proceed to show, such relations are particularly
useful because they allow to invert in a simple way
the integral expressions which follow from the
theory of linear response. Such transformations,
however, do not hold when the anomaly does not
have a power-law character.

In order to show that such non-power-law
(non-scaling) behaviors can readily appear in more
complex, network-type situations, we focus on
small-world networks (SWN), and analyse their
response to external fields. In so doing we keep in
mind that most measurements are performed in
the frequency-domain; we exemplify our findings
with expressions typical for mechanical relaxation
and for dielectric spectroscopy.

Before turning to specific examples we note that
in many instances, such as in the presence of
a constant, non-zero electric field (say, oriented
along the y-axis), Eq. (1) turns out to be equivalent
[8,20,21] to the relation

Y ðtÞ � tc; ð2Þ
where we have R ¼ ðX ; Y ; ZÞ.

2. Fractional derivatives and their connection to
anomalous dynamics

In order to model the viscoelastic properties of
polymers one may start by combining a spring and
a dashpot sequentially. Denoting by r the stress
and by e the strain one has for the spring

r1ðtÞ ¼ Ee1ðtÞ ð3Þ
and for the dashpot

r2ðtÞ ¼ g
de2ðtÞ
dt

; ð4Þ

where E is related to Young’s modulus and g to
the viscosity. The sequential arrangement of spring
and dashpot is the so-called Maxwell model [22],
whose constitutive equation reads

r þ s
dr
dt

¼ sE
de
dt

ð5Þ

with s ¼ g=E. The response of rðtÞ to a stepwise
change in eðtÞ, i.e. to eðtÞ ¼ e0hðtÞ is called the re-
laxation modulus GðtÞ. For the Maxwell model
one has from Eq. (5), see also Ref. [22],

GðtÞ ¼ Ee0e
�t=s: ð6Þ

Relaxation measurements are often performed in
the frequency, x-domain, and not in the time-
domain. Exemplarily, one often measures the
storage modulus

G0ðxÞ 	 x
Z 1

0

GðtÞ sinðxtÞdt ð7Þ

and the loss modulus

G00ðxÞ 	 x
Z 1

0

GðtÞ cosðxtÞdt; ð8Þ

which in the case of the Maxwell model read

G0ðxÞ ¼ ðxsÞ2

ðxsÞ2 þ 1
Ee0 ð9Þ

and

G00ðxÞ ¼ xs

ðxsÞ2 þ 1
Ee0: ð10Þ

Unfortunately, detailed measurements show that
many polymers do not obey such forms [19,20].
The behavior of many classes of polymers is much
better described by changing the derivatives in the
constitutive equation, Eq. (5) to fractional deriva-
tives. As a reminder, one has as defining relation
for fractional derivation the Riemann–Liouville
expression

daf
dta

	 1

Cð�aÞ

Z t

0

f ð~ttÞ
ðt � ~ttÞaþ1

d~tt: ð11Þ

CðzÞ in Eq. (11) is the Gamma-function, and the
expression extends the (integer) recursive integra-
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tion to the domain of real a; differentiation is
obeyed for a > 0, integration for a < 0. Since we
focus on polymers we are in the case of subdiffusive
motion, see Section 1, so that a in Eq. (11) is
bounded, 0 < a < 1. For technical reasons and
because of an intimate relation to linear response
we prefer to extend in Eq. (11) the lower integration
limit to �1; in this way we obtain the Weyl-form
of fractional calculus [23]. For the Weyl-calculus in
general the differentiation rule

daf
dta

¼ db

dtb
da�bf
dta�b

� �
ð12Þ

holds, when one restricts conveniently the set of
functions f [23]. Now it turns out that replacing the
usual derivatives by Weyl-fractional derivatives in
the constitutive equation of the Maxwell-model,
Eq. (5), leads to

rðtÞ þ sa�b d
a�brðtÞ
dta�b

¼ saE
daeðtÞ
dta

ðwitha > bÞ:

ð13Þ

Distinct from Eq. (5) it turns out that Eq. (13)
offers an excellent description for many poly-
meric substances, see Refs. [19,20] for details. As
we proceed to show, the underlying reason for the
success of Eq. (13) is the fact that it is intimately
related to the scaling of the kernel of the response
function; scaling, however, is wide-spread in poly-
mer physics.

We follow here the description of Ref. [20] in
order to show that the Weyl-form of fractional
calculus mirrors in a powerful mathematical way
the behavior of materials whose internal processes
obey algebraic decays. Denoting by UðtÞ the re-
sponse of the system to an external perturbation
WðtÞ, one can express the relation between these
two functions in terms of UsðtÞ, the response of the
system to a step perturbation hðtÞ of W. In the
framework of linear response one has, because of
the superposition principle and of causality,

UðtÞ ¼
Z t

�1
d~ttUsðt � ~ttÞ dWð~ttÞ

d~tt
: ð14Þ

In general Eq. (14) is difficult to invert, being an
integral relation. However, for Us algebraic, i.e.

Us 	 ½C=Cð1� aÞ�ðs0=tÞa, where 0 < a < 1, it fol-
lows that

UðtÞ ¼ Csa
0

1

Cð1� aÞ

Z t

�1

d~tt
ðt � ~ttÞa

dWð~ttÞ
d~tt

¼ Csa
0

daWðtÞ
dta

; ð15Þ

where we used the repeated differentiation as given
in Eq. (12). Clearly now, Eq. (15) can be readily
inverted, since it is a simple fractional derivative.
The inversion reads

WðtÞ ¼ 1

Csa
0

d�aUðtÞ
dt�a

: ð16Þ

Evidently, one can simply read-off from Eq. (16),
by inverting the argument leading from Eq. (14) to
Eq. (15), that the response WsðtÞ to a step pertur-
bation hðtÞ of U is

WsðtÞ ¼
C�1

Cð1þ aÞ
t
s0

� �a

for t > 0: ð17Þ

Alternatively, one can also verify that WsðtÞ cor-
responds indeed to UðtÞ ¼ hðtÞ by inserting WsðtÞ
into the integral of Eq. (15). The integral turns
then for t > 0 into the Beta function Bð1� a; aÞ ¼
Cð1� aÞCðaÞ, see Eqs. 3.191(3) and 8.384 of Ref.
[24], from which UðtÞ ¼ hðtÞ follows.

Eq. (17) makes clear that now the strain (ex-
tension) of the object under an external stress
(force) obeys, due to 0 < a < 1, just the subdiffu-
sive law expressed by Eq. (2). Given now that
many macromolecular systems show such subdif-
fusive behaviors [7–9,20], it becomes evident why
they can be described very well using expressions
involving fractional derivatives; as long as the re-
sponse is linear, scaling behavior and fractional
description are just two sides of the same coin.

3. Generalized Gaussian structures and scaling

To focus our ideas on a particular type of model
we now perform our study in the framework of the
Rouse model [8,25] and of its extension to gener-
alized Gaussian structures (GGS) [26–28]. A GGS
consists of beads subject to friction (with friction
constant f) connected to each other by springs (with
elasticity constant K). In the Langevin framework,
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the position vector rlðtÞ of the lth bead of the GGS,
subject to the external force F lðtÞ, obeys

f
drlðtÞ
dt

þ K
XN
m¼1

AlmrmðtÞ ¼ F lðtÞ þ fwlðtÞ; ð18Þ

where A ¼ fAlmg is the connectivity matrix of the
GGS (see Refs. [26–28] for details), fwlðtÞ is the
thermal noise (here assumed to be Gaussian, with
zero mean-value), and N is the total number of
elements (beads) in the system considered. The
linear system of difference-differential equations
given by Eq. (18) can be completely solved through
the diagonalization of the matrix A, see e.g. Ref.
[28], a procedure which involves in general deter-
mining both the eigenvalues and the eigenfunc-
tions of A. For simplicity, we focus only on the
stretching (extension) of the GGS under a constant
external force FðtÞ ¼ F hðtÞey , switched on at t ¼ 0
and acting only on a single bead, say the lth, in
the y-direction. As discussed in Refs. [28,29], the
displacement of the bead along the y-direction,
Y ðtÞ, reads after averaging both over the fluctu-
ating forces wlðtÞ and over all the beads of the
GGS

Y ðtÞ ¼ F
fN

t þ F s0
f

1

N

XN
i¼2

1� expð�kiðt=s0ÞÞ
ki

;

ð19Þ
where s0 ¼ f=K. This expression is very simple, it
involves only the eigenvalues ki (but not the ei-
genvectors) of the connectivity matrix A. One may
note that in Eq. (19) the motion of the center
of mass has separated automatically from the rest.
Clearly, the behavior of the motion for extremely
short and for very long times is obvious: One
has in the limit of very short times, from Eq. (19),
Y ðtÞ � Ft=f, whereas for very long times one at-
tains Y ðtÞ � Ft=ðNfÞ. This is a very general fea-
ture, which makes clear that the particular
structure of the GGS under investigation (and thus
information about its structural matrix A) is re-
vealed only in the intermediate time domain. This
is also the domain which may show anomalous
dynamics.

Now in the case of a Gaussian chain, when the
force acts on one end of the chain, the displace-
ment Y0ðtÞ simplifies to [8,20]

Y0ðtÞ ¼
F
Nf

t þ 2F
Nf

X1
p¼1

Z t

0

ds expð�p2s=sRÞ; ð20Þ

where sR denotes the Rouse-time

sR ¼ fN 2

p2K
; ð21Þ

which is the longest internal relaxation time of the
Rouse chain [8,25]. A simple calculation shows
that at short and medium times one obtains as
dominant contribution for the displacement (av-
eraged over all beads)

Y ðtÞ � Fffiffiffiffiffiffi
fK

p t1=2 for t � sR; ð22Þ

which indeed scales according to Eq. (2) with
c ¼ 1=2. Another scaling relation is obeyed when
the generalized Gaussian structure is not a simple
chain, but a regular fractal. In this case one ob-
tains, under the same conditions

Y ðtÞ � F

f1�ds=2Kds=2
t1�ds=2 for ds < 2; ð23Þ

as long as ds, the so-called spectral dimension, is
less than two. Again this relation corresponds to
Eq. (2), with c ¼ 1� ds=2.

4. Non-scaling behavior: measurable expressions

In this section we will highlight experiments
which allow one to show that for many GGS,
scaling – as given by Eq. (2) – does not hold. Sev-
eral topological structures do not obey scaling, the
most prominent of which are hyper-branched
polymers and, as a special case, dendrimers
[21,28,30]. In this paper we center on SWN [31–
36]. In so doing we will focus on readily measur-
able quantities for such systems; these are, apart
from the above discussed displacement Y ðtÞ, Eq.
(19), also mechanical and dielectric relaxation
forms. The mechanical side is exemplified by the
complex dynamic modulus G�ðxÞ or, equivalently,
by its real G0ðxÞ and imaginary G00ðxÞ compo-
nents, given for x > 0 by (see also Eqs. 4.159 and
4.160 of Ref. [8])
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G0ðxÞ ¼ mkBT
1

N

XN
i¼2

ðxs0=2kiÞ2

1þ ðxs0=2kiÞ2
ð24Þ

and

G00ðxÞ ¼ mkBT
1

N

XN
i¼2

xs0=2ki

1þ ðxs0=2kiÞ2
; ð25Þ

where m is the number of polymer segments (beads)
per unit volume, ki are the eigenvalues of the
connectivity matrix A of the system, and s0 ¼ f=K.
The k1 ¼ 0 mode corresponds to the translation of
the whole GGS and may influence in G00ðxÞ only in
the very close vicinity of x ¼ 0. Note that the
factor 2 in the relaxation times si ¼ s0=2ki arises
from the second moment of the displacements in-
volved in computing the stress needed in the
evaluation of G�ðxÞ [8]. As discussed before in a
special case, Eqs. (9) and (10), the quantities G0ðxÞ
and G00ðxÞ are the storage and the loss modulus,
respectively [22,37].

The dielectric relaxation forms are based on the
frequency-dependent complex dielectric suscepti-
bility e�ðxÞ. As shown recently, dielectric relax-
ation is very revealing of complex media, such as
percolation structures and fractals [38,39]. As a
special model which leads to convenient, simple
forms we focus here on the dielectric response of
GGSs, which possess dipole moments directed
along their bonds (type A in the usual nomencla-
ture) [40–42]. One has generally for the e�ðxÞ of
polar molecules embedded in non-polar solvents
under an alternating electric field E ¼ E0 expðixtÞ
[43]:

De�ðxÞ ¼ e�ðxÞ � e1
e0 � e1

’
Z 1

0

�
� d

dt
C0ðM; tÞ

�

� expð�ixtÞdt: ð26Þ

In this equation any local fields are ignored. The
e0 and e1 denote the limiting low- and high-
frequency dielectric constants, respectively, and
C0ðM ; tÞ is the normalized autocorrelation func-
tion of the total dipole moment MðtÞ of the sys-
tem,C0ðM ; tÞ ¼ hMð0ÞMðtÞi=hM2ð0Þi.Now, inour
A-type model we assign a longitudinal dipole
moment mj to each bond j of the GGS; we con-
sider in the following the special case that the
magnitude of each mj is directly proportional to

the length of the jth bond, but that the orientation
of the fmjg along the bonds is random and un-
correlated. It is then a straightforward matter to
show that also for general GGS (and not only for
linear chains [8]) C0ðM; tÞ averaged over all pos-
sible orientation distributions is a simple sum in-
volving the GGS bonds only [44], since

hMð0ÞMðtÞi ¼ l2
XNb

j¼1

hujð0ÞujðtÞi: ð27Þ

Here the index j goes over all the Nb, bonds of the
GGS, l is the absolute value of the dipole moment
per unit length, and uj ¼ rl � rm is the vector of the
jth bond between the lth and the mth GGS bead.
The approach presented here parallels that devel-
oped for the dielectric relaxation of regular mesh-
like networks built from macromolecules with
longitudinal dipole moments [45] as well as that
for the mechanical relaxation of a regular lattice
decorated with subunits [46]. Putting these results
together, it follows that

C0ðM; tÞ ¼ 1

N

XN
i¼1

expð�kit=s0Þ; ð28Þ

where, as before, the ki are the eigenvalues of the
GGS connectivity matrix A and N is the total
number of beads in the GGS. The reason why
C0ðM; tÞ takes the simple form, Eq. (28), is due to
the fact that the potential energy U of the GGS,
which enters in the Langevin equation, Eq. (18),
equals [26,27]

U ¼ K
2

XNb

j¼1

u2j ¼
K
2

XN
l;m¼1

Almrlrm: ð29Þ

Therefore, the transformation which diagonalizes
A, automatically reduces hMð0ÞMðtÞi, Eq. (27), to
a sum of exponents, from which Eq. (28) follows.

Inserting now Eq. (28) in Eq. (26) leads imme-
diately to the following expressions for the real
and the imaginary parts of the dielectric suscepti-
bility De� ¼ De0 � iDe00:

De0ðxÞ ¼ 1

N

XN
i¼2

1

1þ ðxs0=kiÞ2
ð30Þ

and
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De00ðxÞ ¼ 1

N

XN
i¼2

xs0=ki

1þ ðxs0=kiÞ2
: ð31Þ

It should be noted in particular that the dielectric
susceptibility De�ðxÞ, Eqs. (30) and (31), is deter-
mined by relaxation times which are twice larger
than those appearing in the expressions of me-
chanical relaxation, Eqs. (24) and (25). As already
stressed, for calculating G�ðxÞ as well as De�ðxÞ we
need only the eigenvalues ki (or the corresponding
relaxation times si) of the small-world Rouse net-
work (SWRN), but not the eigenfunctions.

5. Small-world Rouse networks: numerical calcula-
tions

In this section we focus on GGS based on
SWNs, the so-called SWRN; recently such
SWRNs were used to model disordered cross-
linked polymers [29] by employing the GGS-
extension of the Rouse model [26–28,47–49]. Such
SWRNs are of great theoretical interest, since they
interpolate between linear Rouse chains and dis-
ordered polymer networks.

One very interesting property of SWNs consists
in the appearance of a so-called ‘pseudogap’ in the
density of states [34], namely, a fairly large spac-
ing between the minimal non-vanishing eigenvalue
and the zero eigenvalue of the SWN under study.
It is thus of importance to see how this theoretical
concept and also the general non-scaling behavior
of the density of states translate into observable
quantities, such as Y ðtÞ, the averaged bead-motion
in external fields, the mechanical G0ðxÞ and G00ðxÞ
moduli, and the dielectric e0ðxÞ and e00ðxÞ relax-
ation forms. Exemplarily, we studied Y ðtÞ for
SWRN and have shown that it does not obey Eq.
(2); a much better description is provided e.g. by
the form Y ðtÞ � ðFt=NfÞ � C0t1=6 expð�C00t1=3Þ with
C0 and C00 constants [29]. In the following we
center on the SWRN-expressions related to G�ðxÞ
and to e�ðxÞ.

We follow here the SWRN construction of Ref.
[29], with the exception that we start from a linear
Rouse chain, and not from a ring; the initial chain
consists of N beads, connected by elastic springs
[8,25]. Then we add additional links (AL), i.e.

springs, by connecting each bead of the chain with
probability q=N to another bead, picked ran-
domly. In this way beads distant from each other
along the macromolecular backbone may (due to
the AL) get to be close in space.

We begin by evaluating G0ðxÞ and G00ðxÞ, Eqs.
(24) and (25). In order to obtain ki, the corre-
sponding eigenvalues, we proceed as follows:
starting from specific realisations of SWRNs, for
N ¼ 1000, we determine the corresponding con-
nectivity matrices A, Eq. (18). Using standard
routines for the diagonalization of symmetric
matrices [50], we obtain the N eigenvalues kj of
each matrix A. In order to ascertain how the dif-
ferences in SWRN realisations influence the re-
sults, we compare these for 10 distinct SWRN
realisations. In Figs. 1 and 2 we plot in double
logarithmic scales the reduced (dimensionless)
storage G0ðxÞ=mkBT and loss G00ðxÞ=mkBT moduli
as a function of the reduced frequency xs0; for
q ¼ 0:05, q ¼ 0:1, and q ¼ 0:5 we present the two
extremal results (from 10). We infer that the dif-
ferences are rather small and that the shapes of the
curves are very similar. Note that the differences
decrease with increasing q, indicating that results
for SWRNs with small q are most prone to differ
from realisation to realisation. This may be under-

Fig. 1. The reduced storage modulus G0ðxÞ=mkBT plotted in

double logarithmic scales vs the reduced frequency xs0. Shown
are results for the two extreme realisations (from 10) for SWRN

with N ¼ 1000 and q ¼ 0:05 (M), q ¼ 0:1 (�), and q ¼ 0:5 (�).
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stood from the fact that for fixed q the distribu-
tion in the number NAL of AL is binomial;
then hNALi ¼ Nq, hN 2

ALi � hNALi2 ¼ Nqð1� qÞ and
ðhN 2

ALi � hNALi2Þ=hNALi2 ¼ ð1� qÞ=Nq is a mea-
sure for the relative fluctuations; note that it gets
big for small q. Moreover, Figs. 1 and 2 indicate
that G0ðxÞ is more sensitive to the structural details
than G00ðxÞ. Thus for q ¼ 0:5 the curves for G00ðxÞ
are practically indistinguishable, whereas changes
in G0ðxÞ are still discernible.

In Figs. 3 and 4 we plot for N ¼ 1000 the
SWRN G0ðxÞ and G00ðxÞ, averaged over 100 dif-
ferent realisations. In order to display the depen-
dence of G0ðxÞ and G00ðxÞ on q, we let it take the
values 0, 0.05, 0.1, and 0.5. The case q ¼ 0 is the
standard Rouse chain, whose G0ðxÞ and G00ðxÞ are
well known [8]. From Fig. 3 one can distinguish
very clearly, for q ¼ 0, three characteristic scaling
domains for G0ðxÞ; these scale (from low fre-
quencies x) as x2, x1=2, and x0, respectively. G0ðxÞ
in the low-frequency domain, which in Fig. 3
corresponds to xs0 < 10�5, is given by the small-
xs0 expansion of Eq. (24), and goes as x2; in the
high-frequency domain, in Fig. 3 given by xs0 > 1,
G0ðxÞ tends towards a constant, as evident from
Eq. (24). The non-trivial behavior is the interme-
diate one; for the Rouse chain, q ¼ 0, one finds a

x1=2-law for over four orders of magnitude in x,
see Fig. 3. This behavior changes drastically when
q 6¼ 0, as is evident from Fig. 3; even a small
amount of ALs destroys scaling in the intermedi-
ate range. Moreover, the intermediate range itself

Fig. 2. The reduced loss modulus G00ðxÞ=mkBT plotted in double

logarithmic scales vs the reduced frequency xs0. Shown are

results for the two extreme realisations (from 10) for SWRN

with N ¼ 1000 and q ¼ 0:05 (M), q ¼ 0:1 (�), and q ¼ 0:5 (�).

Fig. 4. The reduced loss modulus G00ðxÞ=mkBT plotted in double

logarithmic scales vs the reduced frequency xs0. Shown are

results for the SWRN with N ¼ 1000 and q ¼ 0 (––), q ¼ 0:05

(M), q ¼ 0:1 (�), and q ¼ 0:5 (�). The averaging is performed

over 100 realisations of the SWRN.

Fig. 3. The reduced storage modulus G0ðxÞ=mkBT plotted in

double logarithmic scales vs the reduced frequency xs0. Shown
are results for the SWRN with N ¼ 1000 and q ¼ 0 (––),

q ¼ 0:05 (M), q ¼ 0:1 (�), and q ¼ 0:5 (�). The averaging is

performed over 100 realisations of the SWRN.
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gets to be smaller; this is due to the fact that the
ALs lead to the disappearance of low-lying modes
in the SWRN (the pseudogap situation). Hence by
starting from q ¼ 0 and increasing q, the x2-curves
of Fig. 3 shift dramatically to the right. This fact
can be used to experimentally determine changes
in the spectrum due to the ALs.

A similar conclusion can be drawn for G00ðxÞ.
Now G00ðxÞ displays a maximum, see Fig. 4. The
position of the maximum is mainly determined by
the rather high frequency modes, which corre-
spond to the motion of just a few SWRN beads;
hence this position depends only weakly on q. All
curves in Fig. 4 show a similar behavior for small
and for large x. Expanding Eq. (25) for small and
for large x one obtains readily that for very small
x one has G00ðxÞ � x, whereas for very large
x one has G00ðxÞ � x�1. Of particular interest is
the intermediate behavior, which for a Rouse
chain (q ¼ 0) shows the usual scaling behavior
G00ðxÞ � x1=2, which is clearly evident in Fig. 4 on
the left side of the maximum. Even a slight in-
crease of q immediately wipes out this intermediate
scaling behavior. Clearly, as found before in the
case of G0ðxÞ, the algebraic scaling is extremely
sensitive to even a few ALs which get superim-
posed on the linear chain and transform it into a
SWRN. Also clearly evident from Fig. 4 is the fact
that the largest deviations from the q ¼ 0 curve
happen on the low-energy-side, again reflecting the
fact that it is here that most changes of the spec-
trum occur; this is the region corresponding to the
pseudogap, connected to a cut-off in the internal
SWRN relaxation modes and to a shift in the
appearance of the so-called terminal relaxation for
very small x. The reason why in the high-fre-
quency domain the changes in G0ðxÞ and G00ðxÞ
(Figs. 3 and 4) are rather small in going from q ¼ 0
to q ¼ 0:5 is physically clear; in the high-frequency
domain one sees the local dynamics, which in-
volves only a few beads, and which is hence little
affected by the ALs.

Another interesting feature in Fig. 4 is the fact
that the maximum of G00ðxÞ gets higher with in-
creasing q. Recalling that G00ðxÞ accounts for the
loss of energy in the system, which is due, on the
microscopic scale, to the friction of the beads in
the viscous medium, it is clear that all SWRNs

with the same number of beads N have the same
energy loss, regardless of q. Now the total loss of
energy, Eloss, is proportional to [8,42]

Eloss �
Z 1

0

XN
i¼2

s0=2ki

1þ ðxs0=2kiÞ2
dx

¼
XN
i¼2

Z 1

0

xs0=2ki

1þ ðxs0=2kiÞ2
d lnx: ð32Þ

Since each of the integrals on the right-hand-side
of Eq. (32) is equal to p=2, the total sum is
ðN � 1Þp=2 (an additional p=2 term comes from
k1 ¼ 0, see the remarks after Eq. (25)). Hence the
total surface under the curve G00ðxÞ, plotted (dis-
tinct from Fig. 4) semi-logarithmically with respect
to x, should be the same for all q values. Given
that with increasing q the loss modulus G00ðxÞ gets
to be strongly changed (squeezed) in the low-fre-
quency domain and that G00ðxÞ is only very weakly
dependent on q in the high-frequency domain, it
follows that the maximal value of G00ðxÞ increases
with q. Our reasoning is clearly confirmed by Fig.
4, which shows an increase of the maximum of
G00ðxÞ with q.

The numerical evaluation of the components
De0ðxÞ and De00ðxÞ of the dielectric susceptibility
De�ðxÞ of SWRNs proceeds analogously to the
evaluation of the components of G�ðxÞ. In fact,
only De0ðxÞ needs to be computed, since from Eqs.
(25) and (31) G00ðxÞ and De00ðxÞ are (apart from the
factor of 2 multiplying the ki) proportional to each
other. Hence the dielectric loss factor De00ðxÞ has
practically the same frequency dependence as the
loss modulus G00ðxÞ; the only difference being the
fact that the relaxation times of De00ðxÞ are twice as
large as those of G00ðxÞ. Hence, due to the loga-
rithmic scales of Fig. 4, the plot of De00ðxÞ differs
from the corresponding plot of the reduced
G00ðxÞ=mkBT only by a shift along the x-axis.
Turning now to De0ðxÞ, we evaluate it for SWRNs
with N ¼ 1000, averaged over 100 realisations,
where q is equal to 0, 0.05, 0.1, and 0.5, respec-
tively. The plots are given in Fig. 5, again,
in double logarithmic scale. At low frequencies,
xs0 � 1, for the Rouse chain, i.e. q ¼ 0, De0ðxÞ
obeys jDe0ðxÞ � 1j � ðxs0Þ2, i.e. it deviates only
slightly from a constant. At larger frequencies, one
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observes for q ¼ 0 first a domain dominated by
the internal Rouse-relaxation of the chain, in
which jDe0ðxÞ � 1j � ðxs0Þ1=2, followed, at high
frequencies, xs0 > 1, by the usual Debye decay,
De0ðxÞ � ðxs0Þ�2

. As before, by increasing q (i.e.
increasing the ALs) the smallest eigenvalues (max-
imum relaxation times) of the SWRN increase
(decrease). Thus in Fig. 5 the frequency domain
corresponding to the internal SWRN relaxation
becomes shorter and sets in at higher frequencies;
this can be visualized as an increase in the rigidity
of the SWRNs with increasing q. On the high-
frequency side, with increasing q, the curves tend
to become steeper, see Fig. 5.

Summarizing, both the mechanical and the di-
electrical relaxation properties of SWRNs depend
in their intermediate x-domain strongly on the
number of ALs inserted into the linear chain. We
infer that SWRNs belonging to different values of
q can be readily distinguished, through judicious
experiments.

6. Conclusions

Anomalous diffusion, often characterized by a
power-law dependence of the mean-square dis-

placement of a moving particle on time, arises
in a number of different physical situations. Such
scaling often shows up in other measurable quan-
tities, such as mechanical response and dielectric
relaxation functions. Here we stressed how a de-
scription in terms of fractional calculus can be very
convenient when dealing with scaling systems, e.g.
by using fractional kinetic equations to describe
the power-law response of such systems to external
perturbations. As examples of systems that display
power-law dynamics, we discussed linear and frac-
tal generalizedGaussian structures.However,many
systems behave in more complicated ways and
thus their response deviates from simple scaling.
Here we treated in detail one class of such systems,
namely the so-called SWRNs. We focused on four
measurable quantities: the storage modulus, the
loss modulus, and the real and imaginary parts of
the dielectric susceptibility. From general analyti-
cal expressions involving only the eigenvalues of
the associated connectivity matrix, we evaluated
numerically these quantities. The results display a
wide variety of non-scaling behaviors and depend
strongly on the number of additional links inserted
into the regular Rouse chain. We were able to
explain the shape of the ensuing curves by invok-
ing the increased rigidity of the SWRN with in-
creasing q, a fact related to the pseudogap concept.
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