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Molecular Dynamics Simulations of
Hyperbranched PAMAM Vicsek Fractals
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Within the broad class of hyperbranched polyme
rs, highly symmetrical objects (such as
dendrimers and Vicsek fractals) are of special theoretical interest. Here we study, using the
MARTINI force-field, polyamidoamineVicsek fractals (PVF) in silico, focusing on their structure and
dynamics in dilute solution. Our extensive microsecond-long simulations show that the radius of

gyration of PVF scales with the molecular weight
as N0.54, behavior rather close to that of stars and
considerably distinct from that of dendrimers. The
study of the radial density profiles indicates that
different parts of the PVF interpenetrate significantly,
fact which stresses the soft and sparse character of
PVF. These results are also supported by our findings
for the rotational autocorrelation functions.
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experiments[21–24] and computer modeling.[25–29]
1. Introduction

Recently, hyperbranched polymers gained a lot of interest,

both theoretically and experimentally.[1,2] While hyper-

branched polymers are a broad and highly colorful class of

materials, with much freedom in their architecture, a

special theoretical focus lies onhighly symmetrical, regular

patterns. Here in particular, dendritic structures[3–7] and
Vicsek fractals[8–12] (VF) enjoy remarkable attention. Be-

cause of their symmetry these polymer classes allow to

simplify analytical approaches, leading to a clear and

detailed understanding of their behavior.[2,3,6,13–18] On the

experimental side, dendrimers were extensively synthe-

sized, while Vicsek fractals (VF) were not up to now.

Dendrimers showa large variety of promising applications,

ranging from catalysis[19] to biomedical delivery sys-

tems,[20] so thatmuch effort was put in investigating them
through

We note, however, that one of the major issues with

dendrimers is the packing problem with increasing

generation which, in fact, limits their growth. In contrast,

the regular, hyperbranched structure of VF is considerably

more sparse than that of dendrimers. In fact, due to their

particular hierarchical construction, VF are not limited by

packing issues in their growth.[9] Moreover, while the

relaxation dynamics of dendrimers does not show typical

scaling behavior, for VF many dynamical quantities

scale as a function of their spectral dimension.[13] It is

therefore of interest to investigate the properties of VF

in spite of the fact that they presently do not exist as

chemical compounds.

In this paper, we study polyamidoamine (PAMAM)

Vicsek fractals (in short, PVF) in silico and employ extensive

molecular dynamics simulations to determine their struc-

tural and dynamic properties. In doing that, we chose to

use the MARTINI force-field,[30] an extensively validated

coarse-grained model of near-atomistic resolution, which

was recently adapted for describing hyperbranched

PAMAM dendrimers (PD).[26,27] Overall, our simulations

provide a detailed, near-atomistic insight into the structure

and dynamics of PAMAM hyperbranched polymers that

possessaVicsek fractal topology. For thesakeofcomparison

to related compounds all results are confronted with the

corresponding findings for PD.
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The article is structured as follows: In the next section

‘‘Model and Simulation Methods’’ we summarize the

architectural properties of Vicsek fractals and sketch the

computationalmodel used. Section ‘‘Results andDiscussion’’
presents our findings as far as the structural and dynamic

properties of PVF are concerned. Finally, we summarize our

results in the last section ‘‘Conclusions.’’
2. Model and Simulation Methods

2.1. PAMAM Vicsek Fractals

At first, we recall the hierarchical construction of the VF. VF

were introduced in ref.[31] and their dynamical properties

were theoretically analyzed in refs.[8–13] In general, VF are

characterized by two parameters, namely by their func-

tionality f (number of nearest neighbors of a branching

point), and by their generation G (number of iterations

performed in their creation), see Figure 1which shows a VF

of functionality f¼ 3 and generationG¼ 3. Generation zero

(G¼ 0) startswith a sole bead,which acts as the seed for the

first iteration step in which 3 new beads are attached to it.

In the second iteration step, the whole VF of generation

G¼ 1 acts as a new seed to which now 3 other G¼ 1 VF

are attached symmetrically, as shown in Figure 1. This

procedure is then iterated. The central bead (corresponding

to theG¼ 0 VF) is called core. We remark that the procedure

highlighted here can be readily extended to VF of arbitrary

functionality f.[9,13]

Here we study VF based on theMARTINI force-field used

for PD.[26,27] Now for PD, each arm of the peripheral shell

consists of a linear spacer connected to a branching point

(belonging to the previous shell) and to one terminal bead,

see Figure 2b. Hence we have to adapt the hierarchical
Figure 1. Iterative construction of a Vicsek fractal of functionality f¼
depicted in red, see text for details.
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construction for VF accordingly: We start from a core

consisting of a sole bead, to which now 3 arms of length 2

are attached (instead of 3 single beads), creating a VF

architecture of generation G¼ 1. The iteration works then

as for the simple VF, with generation (Gþ 1) of this VF

architecture being built out of (3þ 1) structures of

generation G, where one of them acts as the starting seed.

We call the ensuing structures PAMAMVF (PVF) anddenote

a PVF of generation G by PVFG.
Now,Figure2showsschematicallyaPVF3 (Figure2a)and

a PD3 (Figure 2b). Beads belonging to the same shell g are

color-coded. Here, shells follownaturally from the iteration

procedureand contain thenewlyattachedbeads. Thefigure

isonlymeant todisplay theconnectionsbetweenbeads, i.e.,

the topology of the structure. The geometrical form of the

structures presented may be quite different from these

drawings, as we discuss in the following. From the figure is

evident that a stretched PVF occupies by far less of its

available space than a PD of the same functionality and

generation. Moreover, because of its construction scheme,

a PVF with f¼ 3 or f¼ 4 can be readily embedded in the

three-dimensional space for any value of G.[9]

According to the presented hierarchical construction, a

PVF1 consists of 7 beads. Following the scheme of a VF

presented in Figure 1, a PVF2 consists of 7� 4¼ 28 beads.

Hence, a PVFG is built out of (7� 4G-1) beads. Counting the

beads in a similar fashion as for PVF, a PDG is made of

2þ 4� 2�PG
i¼0 2

i ¼ 4� 2Gþ2 � 6 beads. In particular, this

means that a PVF3 and a PD3 contain comparable numbers

(112 and122) of beads, respectively. The sameholds also for

a PVF4 and a PD5. Moreover, from the hierarchical

architecture of PVF and PD the degree of branching

(DB)[32,33] follows readily; for PVF of generations G¼ 2, 3,

and 4 the DB is approximately 0.357, 0.304, and 0.290,

tending toward 2/7 for large G, while for PD of generations
3 and generation G¼ 3. The particular seed of an iteration step is

l. 2015, 24, 100–109
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Figure 2. Illustration (a) of a coarse-grained PAMAMVicsek fractal
and (b) of a PAMAM dendrimer of functionality f¼ 3 and
generation G¼ 3. Beads belonging to the same shell g were
colored in the same way: g¼0 in black, g¼ 1 in red, g¼ 2 in
green, and finally g¼ 3 in blue.

Figure 3. Mapping of the chemical structures of PAMAM Vicsek
fractals into coarse-grained MARTINI beads.
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G¼ 2, 3, 4, and5 theDB is approximately 0.517, 0.508, 0.504,

and 0.502, tending toward 1/2 for G large.
2.2. Coarse-Grained Molecular Dynamics Simulations

Wehaveperformedmoleculardynamics simulationsofPVF

in dilute solutions, for which the number of generations

was varied from two to four. The initial structures of the

generated hyperbranched polymers were solvated with a

coarse-grained solvent, for which, depending on the

system, the number of solvent particles varied from

3164 to 1 051943: In Table 1, we list the systems studied.

Note that due to the very sparse and stretched structure of

PVF, see Figure 2, we are forced, especially for PVF4, to use

large boxes (able to contain an entire spread-out structure)

in order to avoid any effects related to the boundaries. For

the sake of comparison,we also performedMDsimulations

of PD of generations two to five.

All PVFs were simulated in the framework of the latest

version of the coarse-grained MARTINI force-field adapted
Table 1. Simulated polymer systems.

System Architecture Generation

PVF2 Vicsek fractal 2

PVF3 Vicsek fractal 3

PVF4 Vicsek fractal 4

PD2 dendrimer 2

PD3 dendrimer 3

PD4 dendrimer 4

PD5 dendrimer 5
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for PD.[27] The corresponding coarse-grained (CG) beads are

shown in Figure 3: The beads that represent branching

points are called N0 and the beads related to linear spacers

and to terminal groups are called P3. These notations were

introduced for the MARTINI force-field in ref.[30] and

represent two different main categories: P indicates that

the CG beads are polar while N denotes nonpolar beads.

Furthermore, the indices differentiate among the sub-

types.[30] The index of N is related to the hydrogen-bond

capacities of the bead; here 0 stands for no hydrogen-bond

capacities; for P the index refers to an increasing level of

polarity and ranges from 1 to 5.[30] Here we use these CG

beads for the in silico realization of VF structures. Figure 4

displays the coarse-graining procedure for a PVF2 together

with the corresponding structural formulas of the two

different chemical subunits (PVF1) which we envisage.

Finally, for the simulation of water we used the standard

MARTINI representation[27,30,34] which maps four water

molecules to one CG bead of category P4.

The non-bonded interactions between CG beads are

modeled by Lennard-Jones potentials of the form
. 2015,

H & Co
VLJðrijÞ ¼ Cð12Þ
ij =r12ij � Cð6Þ

ij =r6ij: ð1Þ
The parameters Cð6Þ
ij and Cð12Þ

ij for all non-bonded

interactions were originally developed by Marrink

et al.[30] For the P3–P4 interactions the original MARTINI

values are Cð12Þ ¼ 0:23238� 10�2 kJ � nm12 �mol�1 and
Number of

polymer beads

Number of

solvent beads

28 3 164

112 38 215

448 1 051 943

58 1 177

122 2 329

250 4 811

506 9 686

24, 100–109
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Figure 4. Sketch of a coarse-grained PVF of generation G¼ 2. The corresponding structural formulas of the two different subunits (PVF of
generation G¼ 1) are shown between the dashed lines.
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C(6)¼ 0.21558kJ �nm6 �mol�1. These parameters were

adapted to PD by Lee and Larson in ref.,[27] and were set

to Cð12Þ ¼ 0:23703� 10�2 kJ � nm12 �mol�1 and C(6)¼
0.21990 kJ �nm6 �mol�1, respectively, a choice which we

adopt in the following. We list all non-bonded interactions

parameters used by us in Table 2.

In turn, bonded interactions between nearest (NN)

and next-nearest neighboring (NNN) beads are modeled

through weak harmonic potentials[35]
Tab
kJ �

C(6

C(1

www.M
VNNðdÞ ¼ 1

2
Kbondðd� leqÞ2 ð2Þ
and weak harmonic angle potentials[35]
VNNNðuÞ ¼ 1

2
Kangleðu � ueqÞ2: ð3Þ
In Equation (2) and (3) we follow Lee and Larson[27] and

use their parameters, listed in Table 3.

According to thestandardMARTINIparameterization,[30]

the Lennard-Jones interactions were cut off at 1.2 nmwith

a shift to 0 in the range 0.9–1.2 nm. All systems were
le 2. Lennard-Jones parameters used for all simulations of PD an
nm6 �mol�1 and 10�2 kJ �nm12 �mol�1, respectively.

N0–N0
[30] N0–P3

[30] N0–P4
[

) 0.15091 0.15091 0.1509
2) 0.16267 0.16267 0.1626
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simulated in the NpT-ensemble at a temperature of 310K

with the pressure being set to 1 bar. Both temperature and

pressure were kept constant by the Berendsen scheme.[36]

The particular PVF and the solvent were independently

coupled to the thermostat with a coupling constant tT of

1 ps. The corresponding coupling constant tP of the barostat

was set to 3ps. The time step was set to 20 fs. Each system

was simulated for 1ms, the initial part of the trajectory

(defined individually for each simulated system type) was

viewed as an equilibration period and discarded from the

subsequent analysis. The simulation package GROMACS-

4.5.5 was used in all simulations.[35]
3. Results and Discussion

3.1. Radii of Gyration

Atfirst,wedetermined the radii of gyrationRg for all thePVF
structures considered (G¼ 2, 3, and 4). Now, for each

polymer, Rg is given by the rootmean square distance of its

parts from its center of mass (COM) and can be calculated
d PVF chosen as in refs.[27,30] Here C(6) and C(12) are given in units of

30] P3–P3
[30] P3–P4

[27] P4–P4
[30]

1 0.21558 0.21990 0.21558

7 0.23238 0.23703 0.23238

l. 2015, 24, 100–109
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Table 3. Parameters of bonded interactions used for all
simulations of PVF and PD chosen as in refs.[27] Here Kbond and
Kangle are given in units of kJ �nm�2 �mol�1 or kJ � rad�2 �mol�1,
respectively, leq in nm and ueq in degrees (8), respectively.

VNN VNNN

Branching

bead

Linear

spacer

Kbond 4000 Kangle 20 70

leq 0.42 ueq 120 160
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directly from the MD trajectories through:
Figu
and
Rg ¼
P

i mijrij2P
i mi

 !1
2

: ð4Þ
Here mi denotes the mass of bead i and ri is its position

vector with respect to the COM. Note, that the particular

values ofmi are defined by the MARTINI force field [30] and

that they are set to 72 amu for all beads.

In Figure 5,wepresent the timedevelopment ofRg for the
simulatedPVF (G¼ 2,3, and4) calculatedusingEquation (4).

All the simulations started from almost stretched PVF (i.e.,

the realizations shown in Figure 2 and 4) solvated in coarse-

grained water. It turned out that for PVF2 the initial Rg is
relatively close to its equilibrium value, see Figure 5. In

contrast, the behavior of PVF3 and PVF4 is quite different:

In the course of the MD simulations both PVF3 and PVF4

have a tendency to shrink from their initially extended

state. In Figure 6, we present a series of snapshots of a

PVF3 in the course of time. One may notice the quick

decay of Rg in the initial time regime, see Figure 5. Evident

are also the fluctuations of Rg after this time regime,

fluctuations which are larger for larger G. They are due to

the very open structure of the PVF, see Figure 6, which

allows large displacements of the PVF arms. Such motions
0 0.2 0.4 0.6 0.8 1
time (μs)

0

5

10

15

R g
 (n

m
)

re 5. Time development of Rg of PVFwithG¼ 2 (black), 3 (red),
4 (green) from below.
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lead to large changes in Rg, even for structures that have

long before equilibrated to the given temperature. More-

over, we witness a pronounced interpenetration of the

fractal subunits of the PVF, see Figure 6.

Fromtheautocorrelation functionsC(t) related toFigure5
Fig
MD
tim
G¼
one

. 2015,

H & Co
CðtÞ ¼ hdRgðtÞdRgð0Þi
hdR2

gi
; ð5Þ
where dRgðtÞ ¼ RgðtÞ � hRgi,[35,37] we know that the corre-

sponding relaxationtimes tg increasemuchwith increasing

molecular weight N (we refrain from displaying here the

detailed C(t) forms). Here, the tg are defined as the time at

which the C(t) reach the value 1/e. In Table 4, we show for

all the PVF considered tg obtained by averaging over nine

individual time intervals covering the whole MD trajecto-

ries. For PVF2 and PVF3 the intervals are 100ns and for

PVF4 500ns long. In Table 4, the corresponding standard
ure 6. Configurations of a PVF of generation G¼ 3 based on
simulations. The snapshots are taken at differentmoments in
e. The PVF of generation G¼ 3 consists of 4 PVF of generation
2 which are depicted here in different colors: The central
is blue while the others are red, orange, and green.

24, 100–109
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Table 4. Average values of the relaxation times tg and trot in ns related to the autocorrelation function of the radius of gyration and the
rotational correlation functions for PVF and PD of generations two to five as obtained from MD simulations. The presented errors are the
standard deviation from the mean.

PVF PD

tg trot tg trot

G¼ 2 0.48� 0.06 2.78� 0.08 0.33� 0.03 2.86� 0.07

G¼ 3 5.8� 0.7 16.8� 0.5 0.76� 0.11 6.4� 0.3

G¼ 4 58� 5 160� 2 1.44� 0.20 15.2� 1.3

G¼ 5 2.31� 0.24 33� 3
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deviation from themean is also shown.Wenote that all our

simulations reacha steady-statewithinour simulated time

scales.

Based on Figure 5 we determined the hRgi for PVF with

G¼ 2, 3, and 4 as a function of N, see Table 5 and Figure 7.

In doing so, we have not taken into account the region of

the fast initial decay (i.e., for PVF2 the first 1ns, for PVF3
Table 5. Average values of the radius of gyration hRgi in nm for
PVF and PD of generations two to five as obtained from MD
simulations. For PD the radii of gyration determined by Lee and
Larson[27] are shown in brackets. All errors are representing the
standard deviation of the mean.

PVF PD

G¼ 2 1.5� 0.1 1.37� 0.07

G¼ 3 3.1� 0.4 1.75� 0.07

G¼ 4 6.6� 0.8 2.15� 0.07 (2.07� 0.1)

G¼ 5 2.60� 0.06 (2.57� 0.2)

〈
〉

〈
〉

Figure 7. The average hRgi of PVF with G¼ 2, 3,and 4 as a function
of the molecular weight N. The solid line is a linear fit to the
simulation data; the fit implies hRgi � N0:54. The inset shows for
the sake of comparison hRgi for PD of generation two to five, as
obtained from our simulations. The corresponding fit to the
simulation data implies hRgi � N0:30.
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the first 20ns, and for PVF4 the first 100ns). As is clearly

visible from the double logarithmic plot of Figure 7, hRgi
scales as a power law, hRgi � Ng , with the scaling factor

being g¼ 0.54.Note that this scaling exponent is somewhat

smaller than that found for star polymers, for which one

has gStar � 0:58.[38,39] On the other hand, we found

gPD¼ 0.30 for PD (see the inset of Figure 7), similar to

~gPD ¼ 1=3, as reported from atomistic MD simulations of

flexible PD.[40] The difference in the g-exponent for PVF and

for PD also renders clear that their compactness differs.

As the geometrical realizations suggest (see Figure 2), the

PD turn out to be considerably denser than the PVF.

Finally, a rough measure of the shape of polymers is

provided by the principal moments Ix, Iy, and Iz of their

gyration tensors (we take Ix� Iy� Iz). The aspect ratios Iz/Ix
and Iz/Iy for PVF of generationsG¼ 2, 3, and 4 are presented

in Figure 8; for all PVF considered they reveal non-spherical

shapes. In Figure 8, all presented error bars are based upon

the standard deviation from themean values of Ix, Iy, and Iz.
In contrast, for PD these ratios tend for large G towards

unity,[28] which shows that the PD get increasingly

spherically symmetric.
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Figure 8. Aspect ratios of the principal moments (Ix� Iy� Iz) of
the gyration tensor as a function of the generation G. Shown are
the ratios Iz/Iy (red circles, lower values) and Iz/Ix (black squares,
upper values).
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Moreover, for PVF an estimate of the fractal dimension

dfrac can be obtained as follows: First, in the case of a

stretched-out PVF embedded in 2d the corresponding

fractal dimension d2d
frac is d2d

frac ¼ ln4=ln3.[9] Now, the PVF

arms are filamentary and can fold. For a chain the Flory

expression is hRgi � N0:6; here we found for PVF

hRgi � N0:54. Using this exponent, we infer for solvated

PVF in 3d that dfrac ’ d2d
frac=0:54 ’ 2:3. This value is quite

close to that of a 2d euclidean object, i.e., a simple surface.

Moreover, this dfrac value mirrors the filamentary PVF

geometry, namely, the object does not have a clear-cut

surface in a topological sense. In contrast, the much more

compact PD is almost three dimensional, having a quite

well-developed surface, which encompasses the many

remaining bulk beads.
〈ρ
〉

〈ρ
〉

Figure 9. (a) Average radial bead distributions and (b) radial bead
densities for a PVF4 as a function of the radial distance r from the
COM. Presented are results for all beads of the PVF (black), for the
beads from particular shells (g¼ 1 in red, g¼ 2 in green, g¼ 3 in
blue, and g¼ 4 in orange), and for the solvent beads (magenta).
3.2. Radial Number and Density Profiles

To get a more detailed insight in the structure of PVF, we

determine the radial bead distributions and the radial

density profiles as a function of the radial distance r from
the COM. At predetermined time steps after the steady-

state is reached we evaluate the radial bead distributions

using spherical layers ofwidth0.02nmand increasing radii

centered on the COM, which cover the entire simulation

box. In thisway, we determine the number of beadswithin

each layer. Themean radial distribution is thenobtainedby

averaging over all the time steps considered. We calculate

the corresponding radial bead densities by dividing the

obtained bead distributions by the corresponding layer

volumes.

For PVF4 we present in Figure 9a the mean radial bead

distributionsand inFigure9bthecorresponding radialbead

densities hrðrÞi. Based on the previous discussion, the

first 100ns of the MD trajectory are estimated to be the

equilibration period for all simulated PVF4, the rest of

the trajectorybeingused tocalculate thebeaddistributions.

As can be seen from Figure 9a, the maxima of the bead

distributions corresponding to specific shells g are located

at larger r-values with increasing g. However, given that

the terminal shell g¼ 4 contains 75% of all PVF beads, the

beads of this shell dominate, which results in an extensive

broadening of the distribution related to all PVF beads.

As can be seen in Figure 9a the corresponding black curve

does not show a clear maximum. Moreover, the dominant

behavior of the terminal shell is also visible from the fact

that the maximum of its bead distribution is located close

to the hRgi-value of the PVF4, see Table 5 and Figure 5.

Furthermore, with increasing shell number the PVF arms

get to be more flexible, which leads to a significant

interpenetration of the different shells, as is evidenced

by Figure 9. Consequently, PVF are macromolecules with a

rather soft character. This feature allows the solvent to fill

very easily the space which is not occupied by PVF beads,
Macromol. Theory Simul
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leading to a quite low polymer density for the simulated

PVF4 system. Remarkably, neither the specific bead

densities nor the water density vanish when approaching

the COM of the PVF, see Figure 9b. Hence, contrary to the

sketches shown in Figure 2 and 4, the core and the COMof a

PVF are located rather far from each other (see Figure 11).

Here we have shown only the curves for PVF4; we note,

however, that similar findings are also present for the

other PVF structures.

In Figure 10a, we display the mean radial bead

distributions and in Figure 10b the corresponding radial

bead densities hrðrÞi for PD5. This allows us to compare the

radial profiles of PVF4 and PD5. As can be seen in Figure 9

and 10, the width at half maximum for all PVF beads is

approximately 7nm, while for PD it is only around 2nm.

Furthermore, as for PVF4, water penetrates deeply into the

PD5. Given that the PVF4 and PD5 systems contain 448

and 506 beads, respectively, this clearly demonstrates that

the PVF are less compact than the PD, resulting in a

considerable swellingandspatial expansion.Moreover, due
. 2015, 24, 100–109
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Figure 11. Temporal dependency of the distance between the core
and the COM of a PD5 (black, lower curve) and of a PVF4 (red,
upper curve).

〈
〉

〈ρ
〉

Figure 10. (a) Average radial bead distributions and (b) radial bead
densities for a PD5 as a function of the radial distance r from the
COM. Presented are results for all beads of the PD (black), for the
beads from particular shells (g¼0 in red, g¼ 1 in green, g¼ 2 in
blue, g¼ 3 in orange, g¼4 in maroon, and g¼ 5 in cyan), and for
the solvent beads (magenta).
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to the dense structure of PD, its core and COM are always

rather close, resulting in vanishing densities for all (water

and PD) beads which do not belong to the shell g¼ 0.
3.3. Rotational Autocorrelation Function

Thedynamicalbehaviorof thePVF is studiedbytherotation

of the PVF, which can be described by the rotational

autocorrelation function[35,37,41]
0

0

0

0

C
ro

t(t
)

Figu
gen
The
1/e.

l. 2015,

bH & C
CrotðtÞ ¼ hdRiðtÞ � dRið0Þi
hdR2

i i
; ð6Þ
where dRiðtÞ ¼ RiðtÞ � hRii. Furthermore, Ri represents the

vector from the PVF core bead c to the peripheral bead i,
Ri ¼ ri � rc . Hence the average in Equation (6) is performed

over all peripheral beads of the PVF. In case of PVF,

peripheral beads are beads of functionality one which are

connected with the core of the PVF by the longest possible

path of PVF beads. Hence a PVF2 has six peripheral beads,

while a PVF3 and PVF4 have 12 and 24, respectively. The

focus on peripheral beads is justified by the fact that

these beads are located most remotely from the core at

the very beginning of all simulations (stretched initial

configurations) and that the beads of the highest shell

are most likely farther away from the core, see the radial

density profiles in Figure 9.

In Figure 12, we display Crot(t) for PVF2, PVF3, and PVF4

in linear and in the inset in semi-logarithmic scales. As is

evident from this representation, none of the correlation

functions follow a pure exponential decay, fact indicating

multiple relaxation processes. Nevertheless, we proceed in

analogy to tgbysetting trot tobe the timeatwhich theCrot(t)
reach the value 1/e. In Table 4 we display for all the PVF

considered trot obtained by averaging over nine individual
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re 12. Rotational autocorrelation functions of PVF with
erations G¼ 2 (black), 3 (red), and 4 (green) from below.
dashed magenta line represents the equilibration value
The inset shows the plot in semi-logarithmic scales.
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time intervals covering the whole MD trajectories. For

PVF2 the intervals are 100ns long, for PVF3 250ns, and

for PVF4 500ns. Accordingly, all errors represent the

standard deviation from the mean value. As found for tg,

trot increasesmuchwith themolecularweightN. However,

trot is approximately five and three times larger than tg for

PVF2 and for PVF3 and PVF4, respectively. On the other

hand, onefinds that tg is increasing roughly by the factor 10

with growing generation G, while trot increases roughly

by the factor 6 and 10, respectively. It is tempting to

speculate that these relations imply that both tg and trot
scale with G. However, for a conclusive statement about

scaling oneneeds to investigatemore and, especially, larger

PVF structures.

For PD it turns out that both relaxation times increasing

roughlyby the factor2withgrowingG. Thus, the rotationas

a whole (as well as the approach to the steady-state)

proceeds much slower for PVF than for PD of comparable

molecular weight. This is understandable realizing that for

such PVF-PD pairs, the moment of inertia of PVF (which is

proportional to R2g) is much larger than that for PD, a

consequence of the spread-out PVF structure. Hence, at

the same temperature the object with the larger R2
g rotates

more slowly.
4. Conclusion

In this work we have studied PAMAMVicsek fractals (PVF)

in silico and determined their properties in dilute solutions

basedonmoleculardynamics simulationswhichemployed

the coarse-grained MARTINI force-field.[27]

Remarkably, the Rg-values of PVF scale with the

molecular weight N, the scaling exponent turning out to

be 0.54, which is considerably larger than the exponents

0.30 determined by us for PD and 0.33 determined for

flexible dendrimers in ref.[40] We note that the exponent

found by us for PVF is rather close but smaller to that found

for star polymers.[38,39] The observed difference in the

scaling exponents implies thatwith increasingN the size of

PVF increases much more than that of PD. Furthermore, as

explicitly shown for a PVF4 wewitness strong fluctuations

of the radius of gyration Rg, which lets us conclude that PVF

are much softer hyperbranched polymers than the PD (the

latter tending to form some sort of dense balls for G rather

large). Moreover, studying the principal moments of the

gyration tensor indicates a non-spherical shape for PVF

independently of the generation G while, in contrast,

dendrimers with growing G tend to an increasingly

globular shape.[28]

In addition to the radius of gyration, we also considered

for PVF the radial bead distributions and the radial bead

densities as a function of the distance from the center of

mass (COM). For PVF we observed a considerable degree of
Macromol. Theory Simul

� 2014 WILEY-VCH Verlag Gmb
interpenetration of beads of different shells and thatwater

penetrates it deeply, which leads to a considerable degree

of swelling. In contrast, for PD one observes a quite dense

geometry accompanied by a significant degree of back-

folding of the peripheral shell toward the COM as in ref.[28]

Finally, we calculated the rotational autocorrelation

functions and obtained the corresponding rotational

relaxation times trot. As it turned out trot increases with

growing generationG roughly by the factors 6 and 10while

for PD the corresponding trot increase only roughly by a

factor 2, displaying slower rotation of PVF.

This articlewas devoted to the qualitatively very distinct

behavior found in two very important representatives of

hyperbranched structures, namely the PD and the PVF.

For a more quantitative analysis of PVF, especially when

experimental data will become available, full atomistic

simulationswill be definitely necessarywhich, however, at

the moment go beyond our intentions here.
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