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Full Paper: The local relaxation propertiesof polymer
networkswith a two-dimensionatonnectivityareconsid-
ered.We usethe mesh-likenetwork modelin which the
averagepositions of junctions form the regular spatial
structure consisting of squarerepeatingunits (network
cells). The two-dimensionalpolymer network consisting
of “bead and spring” Rouse chains and the simplified
coarse-grainedetwork model describingonly the large-
scalecollective relaxationof a network are studied. For
both dynamicnetwork modelsthe setof relaxationtimes
andthe transformatiorfrom Cartesiancoordinatef net-
work elementsto normal modesare obtained.Using the
normal mode transformationobtained,in Part 2 of this
seriesthe exact analytical expressiondor various local
dynamiccharacteristicof the polymer network having a
two-dimensionatonnectivitywill becalculated.
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1. Intr oduction

Cross-linkel polymersrepresenta broadandvery impor-
tantclassof matrials.Much interestin cross-linkedpoly-
mers (polymer netwoks) is raisedl becase they are
widely used for numepus techrical applicatbns.
Whereaghe statistical propertiesof cross-lnkedpolymer
systemshave been studed thoroughy, the processs
determinng their dynamic properties are not yet com-
pletely understoodin polymer physicsin comparisonto
thoseof polymer solutiors or melts. This is mainly dueto
a conplex chamcter of physical phenonena manifesed
in polymer netwoks and to a great numkber of factors
which influencedynamt propertiesof cross-linkedpoly-
mersystens.

Polymer networks represet polymeas in which the
maaomolecuksare connecedto eachotherby mears of
chemical cross-Inksandform anunified spatialstructure.
The fundamendl featureof cross-linkedpolymersis that
their relaxatbn propertesaredeteminednot only by the
behavior of individual polymer chairs but alsoby the col-
lective long-sale relaxaton of network chains. These
collective interchain relaxationproceses having charac-
teristic scalesgreaer than the aveiage length of chains
between cross-lnks arise from a strong connectivity
betweenall chainsin a netwokk. As a resultof the con-
nectvity betweenchairs, it is impossble to separatethe
dynamic behavig of a given chain from those of other
chainsin contastto polymer melts andsoluions.
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Real cross-linkel polymersrepresetithe threedimen-
sional netwok structuresas a rule. Howevae, it is very
interestng to considersome special caseof a polymer
netwok with resticted geomety, namely the polymer
netwok with a two-dimensional connectivty. Such a
polyme netwok may be reaized, for example,in poly-
mer films, on the surfacesof polymer sampes, etc.
Furthermae, the consterationof two-dimensionalpoly-
mer netwoiks is of specialinterestfrom the point of view
of the geneal theay of polymer netwoks becawse the
influenceof chainconnectivty on dynamic propertiesof
two-dimensional polyme netwoks is expectedto be
weakerasconparedto the three-dinensianal cas. In this
seriesof paperswe constder the relaxationpropertiesof
polyme netwoks having a two-dimensional connectiv
ity. In general differentdynamic modelsof polymer net-
works with sucha type of comectivity may be consid-
ered. For example,the dynamcs of a two-dimensonal
netwok on the plane may be studied.In this paperwe
shall focus on the mesh-lke polymer netwok having a
two-dimensional connectivty in the threedimensimal
Cartesian space.This dynamic netwak model may be
visually imagedas a fishing netin water. Moreower, the
regular polymer netwok is corsidered.This mears that
all netwok chanshaveidenticalcontourlenghs,andthe
avergye postions of junctionsform the regular netwoik
structureconsistingof squarecellsif the netwok wereto
bestrechedontheplane

The equiibrium propertiesof a squareplanarnetwoik
have been studed previously by Ronka and Allegra®.
Theyhaveconsteredthesimplified coarse-grairdmodel
of atwo-dimengonal squarenetwak in whichalong flex-
ible chainbetweemeighboringnetwok junctionsis mod-
eledby a single Gaussin spiing. It hasbeenshowrt! that
the meansquareradiusof gyrationof the networkhaving
a two-dimensionalconnectvity, increasedogarithmcally
with the total numberof chairs in the netwok. Thisis in
contrastto the threedimensonal Gaussia netwokks in
whichtheanalgousequilibrium quantity doesnotdepend
onthetotd numberof netwak chans!!

The dynamic behavia of two-dimengonal squarenet-
works consistingof “bead and spring” Rousechairs has
beenconsteredby Chompf and Duisa.? The mechani-
cal spectrumof relaxationtimes t of a two-dimensgonal
polyme netwok hasbeenobtained.lt hasbeenshown?
that the relaxation spectrumof a squareregularnetwoik
hasusualRouseanbehaviorl/,/z in the region of intra-
chainrelaxation(i. e. at times smaller thanthe maximum
relaxatbn time of a chain between cross-links) and
behavesas 1/r in the region of interchain collective
relaxatbn. Note thatthe behavia of the interchainpartof
the relaxation spectum of a two-dimensonal polymer
netwok differs from that of three-dinensionalnetwoks
in which the interchain long-time tail of relaxaton spec-
trum behavess1/:*? (see for exanple, refs7).

The main aim of this seies of papersis to study in
detail the local dynamic chamcterigics of junctions and
non-juncton chainsegment®f the polymer netwak with
a two-dimensional connectvity. Theseimportart local
characteistics were not consideredso far and may be
manifesed in dieledric relaxaton, dynamic modulus of
cross-linked polymers, incoherent dynamic scattering
NMR, etc. Furthemore, the theoretical results of this
work may be directly compaed with dataof recert com
putersimulation of regulartwo-dimensioral netwoiks &9
The paperis organizd as follows. The two-dimensioral
regular network consising of multisegnental Gaussan
chainsand the simplified coarse-graied netwolk model
describirg only the large-scalecollective relaxationof a
networkare constered.For both dynamicnetwok mod-
els the set of relaxationtimeswill be obtained Further
more, we shall constuct the transfomation from Carte-
sian coadinatesof netwok elementsto normal coordk
nates(normalmodes)for both netwok models.Theexact
analytical expressns for various local dynamc chara-
teristics of regular polymer netwoks having a two-
dimensimal connecivity will be obtainedin a following
paperof this series using the normalmodetransformation
construced.

2. Two-dimensiaal polymer network
consistingof multisegmental Gaussian
chains

2.1. Dynamicmodelof a network

Thetwo-dimensonal polymernetwok conssting of mul-
tisegmendl Gaussia chainsis consideredSuch a type of
networksystemrepresentghe two-dimensonal analogof
a cubic Gaussin netwok consideed previously” It
shouldbe especiallyemphasizedhat the network consid-
ered representsa two-dimensionalstructure only in the
senseof connectvity of netwok chairs, i. e. we consider
the dynamts of a two-dimensioral Gaussiametwok in
the three-dinensional Cartesian space (“fishing net in
water”). We study the dynamis of meshlike netwok
model, and the aveage positiors of netwok junctions
form the regular spatial structure corsisting of squae
cells. An elementary cell (or, a repeating unit) of the
squareregular netwok consiss of a junction and two
“bead and spring” Rouse chairg*® (Fig. 1). A phantom
Gaussiannetwok is considered,the excluded volume
interactonsandentarglementeffects areneglected.
EachRousechan betweercross-linkscontdns n beads
and,correspndingly, (n + 1) subchins connecthg them.
All subchainshaveidentical cortour lenghs and act as
springs with the elasticty constat K,. The dynamic
behavior of the Gaussan netwok, moving reldive to
effective viscaus medium under stochatic Brownian
forces, is studied. The friction consants of a netwok
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Fig.1. An elementarycell of a two-dimensionalsquarenet-
work consistingof multisegmenth*beadandspring” chains

junctionanda nonjunction beadof the netwok chainare
denotedas g, and ¢, respetively. Only the X projec
tions of positionvectas of the netwok elementsarecon-
sideredbecauseX, Y, and Z projecions for a Gaussan
network are independentof eachother Eachcell of the
two-dimensional squarenetwok is marked by a two-
comporentindex Q = (a,) (Fig. 1). A netwok consists
of N junctions(crosslinks) alongeachnetwoik direction,
i.e. the indices a and f changefrom 1 to N. Therdore,
the total numberof squarenetwok cells is equal to N2,
The X coordinatef a netwok junction anda non-junc-
tion beadare deroted as X,(Q2;t) and X,(€2;]; 1), respe-
tively. Hereindex p mears the numberof multisegmental
Gaussianchains in the netwok cell Q=(a,f) (i.e.
p = 1;2 for squae netwok) andindex j = 1...n mears the
position of a non-juncton beadalong the network chain
betweenneighboringjunctions (j =0 andj =n+ 1 in the
caseof anetwak junction).

The equaion of motion of a non-juncton beadof the
networkchainhasthefollowing form:

d . .
S Exp(ﬂ;l; t) + Ko[2Xp(Q2;]; 1)

—Xo(Q;] +1;t) — X(Q;] — Lit)] = Fg (1)

whereFyg, is the stochast Brownianforce (see for exam
ple, ref2). The equations of motions for nonjunction
beadsof a two-dimensionalnetwok havethe sameform
asthoseof athree-dinensioal cukic netwok.™ The dif-
ferencebetweenwo- andthreedimensiamal polymer net-
works conssting of “bead and spiing” Rouse chairs is
manifesed only in the equations of motion of netwoik
junctions The network junction of a two-dimensonal
squarenetwolk is connecte by subclainsto four neigh-
boring non-juncton beadsin contrastto the cubic net-
work in which the junction is connectd to six nonjunc-

tion bead. The corresponihg equationof motion of a
junction of the networkwith a two-dimensionalcormec-
tivity is givenby:

G Yol B2 1) + KoldXo(at, 1) — Xa(a, B 1:0)
— Xq(a = 1,8;n;t) — Xo(a, B; 151)

— Xo(a, f— L;n;t)] = Fe 2

The main aim of this seriesof papersis to study the
locd dynamic charaderisticsof a two-dimengonal poly-
mernetwoik, which dependslightly onthe boundarycon
ditions of the macroscgic netwok as a whole. In the
corsideration of analgous local chamcteristics of a
threedimensonal polyme netwok, the petiodic bound-
ary corditions have been used” Moreower, the same
boundary conditions have beenalso usedin recent com-
puter simulafons of two-dimensioral polymer net-
works® 9 Therfore,the squarenetwok systemwith per
iodic boundary conditions will be considerd in this
paper. Thesebounday corditions meanthat

X1(0, B3 n; 1) = Xi(N, g5 n; t) (39)

Xo(a, 0;m;t) = Xp(a, N;n;t) (3b)

As it will be shown below the use of the periodc
bouwndaryconditionsallows usto obtainthe exactanalyti-
cal soluion for agivenmechanichsystemat the arbitrary
numkers of netwok junctionsN and nonjunction beads
nin anetwok chairs betweercross-links.

2.2. Normalmodesandrelaxationtimes

In orderto obtain the analytical expres®ns for various
dynamic charateristics of a two-dimensonal Gaussia
netwak, it is necessar to solvethe equatiors of maotion
of netwok elements(Eg. (1) and (2)). We shall usethe
normal mode treatnent (see,for exanple, ref® "), The
gereral form of transfomation from Cartesian coordi-
nates X of netwok elenmentsto normal coordnatesQ
(normalmodes)hasthefollowing form:

Xo(a, B51) = Y > exp(iaby) exp(p0s)

002 v

X (Agsinjy + By cosjw)Q(01, 0a: s t) (4
Xo(a, fit) = > " exp(iaty) exp(if6,)
By Q(917 025 w; t) (4b)

Here 6 = (61,0,) is the interchainwave vecta deta-
mining the phaseshift betweendisplacenentsof neigh-
boring netwok cellsfor a givennormd mode. The inter-
chain wavevecta of squarepolymer netwok is the two-




410

'#WMHH

Yu. Ya. Gotlib, A. A. Gurtovenko

comporentquantityin contrastto the cubic Gaussannet-
work wherewave vecta 6 hasthreeconponent$”. The
intrachain wave vector y deternines the phase shift
betweenneighboring non-jundion beadsalong the net-
work chain Note thatthe coeficients A, Az, Bo, By, and
B, maydepend on wavevectas y andé.

Substtuting the normalmodetransformaton (Eg. (4a))
into the equaions of motion of non-juncton bead
(Eqg. (1)) one canobtain the equatons of motion of nor
mal modesQ

oo Q) + Ko 21— cosp)Q) =Fa(@)  (5)
where Fg, is the stochadt Brownian force™l. The time
dependeoeof eachnormalmodehasthesimple form Q(t)
= Q(0)exp—t/z] wherez is the relaxationtime of a given
normalmode. The equatons of motion of normal modes
without stochast Brownian forces Fg, give the set of
relaxatbntimesof atwo-dimensonal Gawssiannetwak

So

Ko2(1 — cos ) ©)

w(y) =
Note that the expres#n for relaxatbn timesof a two-
dimensimal netwak in the formal sensehasa similar
form to thatfor a singlechain*>! Howe\er, in the case
of a network the intrachain wave vector w hasa rather
complicated structure and dependson the interchan
wave vecta 6. Using the periodc boundaryconditions
(Eq. (3)) andthe normal mode transfamation (Eg. (4a))
onecanobtdn the comporentsof interchain wave vector
6 =(6:1,62)
2n

W 51;2§

where N is the numberof netwak junctions along the
givennetworkdirecton.

In order to obtdn the intrachan wave vecta y and,
therefore therelaxationtimesof atwo-dimensionalGaus-
sian netwok, it is necessaryo combire the equdion of
motion of a netwok junction (Eg. (2)) andthe additional
boundarycorditionsin thenetwok junctions,namely

01;2 -

Xo(a, f;1) = X(a — 1, f;n+ 1;t) (8a)
Xo(a, ;1) = Xa(a, f — L;n+ L;t) (8b)
Xo(a, ;1) = Xa(a, B; 0; ) (8¢)
Xo(a, ;1) = Xa(a, B; 0; ) (8d)

The exactanalptical solution for a given two-dimen-
sionalmedanicalsystembecomegossithe if thefriction
constantof a netwok junction is two times greaterthan
thatof a non-juncton bead

Sjun = 25 (9)

This conditioncorrespndsto the superpogion of non
junction beadgwith friction constintg,) of two intersect
ing multisegnentalchairs in the netwak junction. It this
case the equation of motion of a netwolk junction
(Eqg. (2)) may be presentedn the formal senseasthe sum
of two equations of motion of non-juncton beads
(Eq. (1)). In othercasesi. e.if Eq.(9) is not fulfilled, the
solution may be obtained using numeical calcuktions.
Note that the rigorous analytical solution for a three-
dimensimal netwak exiss if ., = 3¢, (seeref™™). The
combindion of Eq.(2), (8), and (9) gives two different
setsof wavevectas y (comparewith Eq.(9) and(10) in
ref.” for athree-dinensiaal polymernetwok)

cos(N+ L)y, = % (cos 6, + cos 6,) (10)
sin(n+ 1)y, =0 (11

Therefae, the intrachan wave vector v of a two-
dimensimal polymer networkhasthefollowing structure

S I arccosi( 01 + cos 0,);
l//lin—i—l S 2cosl cosbs);
| =0..n/2 (12)
4
Vo= k; k=1.n (13)

In Eq. (12) sign+ shouldbe chose atl = 0 andsigns +
at | # 0. Note that Eq. (12) is written for the casewhen
the quantiy n is an evennumter. It doesnot restrictthe
theory becauseone can consier the cae of odd n as
well.

It is seenthat the total numberof wave vectorsy ata
givenvalueof interchain wavevecbr 6= (61,6,) is equal
to thetotal numker of degreef freedam in a squarenet-
work cell Q = (a, ), nanely, is equal to (2n + 1). Eq. (12)
and (13) indicatethe existence of two differentbranches
of relaxationspectrumz(y;) andz(y,). Thebranchz(y,)
determinedby wave vecta w, (see Eq.(13)) doesnot
dependon the phaseshift 0 betweendispacementsof
neighbaing netwok cellsandis very similar to the se of
relaxationtimes of a single Rousechain*®* The main
and more complicated branch of relaxaton spectrum
7(w1) dependsn the phaseshift alongthe netwok chain
2lz/(n + 1) and on the phaseshift betweennetwok cells
6 aswell (seeEq.(12)). If I in Eqg.(12) is equd to zerq
thewave vecbor

1
n+1

l//net(01702) = l//l(l = 0) =
arccos% (cos 6y + cos 6,) (14

andcorresponihg relaxatbn times (wne) do not depend
on the motionsof netwok chairs inside of the cells of a
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network and describe only the long-scéde collective
relaxationcorrespndingto the displacenentsof netwoik

cells.If | # 0O (seeEq.(12)) eachrelaxationtime of a net-
work chainz(y,) splitsinto the bard conssting of a great
numberof sublinesdueto the changeof interchainwave
vectorf = (6, 6,). Notethatthe broacening Ay (1) = ynet
of intrachainmodes(and corresponihg relaxaton time)

is smaller thanthe difference(y (I + 1) — w1 (1)) between
neighbaing y,(l) values at | # 0. This means that the
bandscorresponihg to the broaderd relaxaton timesof

anetworkchan arenot supeposed.

A certainchaiacteridic relaxatbn time zcnain €Xistsin a
network system,which separateghe purely interchan
motionswith relaxationtimes z(yne) andthe smal-scale
intrachan motions with relaxationtimes 7(w1) at| # 0
and 7(w,), which are deternined by the phase shift
betweemeighboringbead alongthe netwok chain This
relaxationtime zcnain represets the maxmum relaxation
time of a netwok chain asa whole. On the othe hand,
the quantity 7cnain is equalto the minimumrelaxaton time
of long-scaleinterchan motionscorrespndingto thedis-
placemets of netwok cells. To sumup, onecanwrite
(15

Tonain = T(W1)liLn = t(W2)ler =

(d):(ntn)

UsingEq.(6), (12),and(13) onecanobfain the chara-
teristicrelaxationtime

T(l//net) |§:(T[‘77.‘)

iz (n+ 1)’z (16)

Tchain =
wheren is the numker of beadsin a chan betweencross-
links and 7o = ¢, /4K, is the relaxationtime of a Gawssian
subchairor the minimum relaxationtime of atwo-dimen-
sionalnetwok (seeEg. (6) aty = n).

In paper2 of this serieswe shallusethe transformation
from Cartesian coordnatesto normalmodesto calcukte
local dynamiccharateristicsof a two-dimensonal poly-
mer netwak. For exanple, the autacorrelationfunctions
{X(0)X(t)) of the X projedionsof junctionsandnonjunc-
tion beadswhich are manifestel in meansquaredispla-
cemers, may be presentedusing normal mode transfa-
mationasthe sumof autacorrelationfunctionsof normal
modes<Q(0)Q(t)> which relax accordirg to the simple
exponenl law. In orderto constructthe normal mode
transformatbn, five coeficientsA;, Az, By, B1, andB; in
Eq. (4) mustbe obtainedusing the equatiors of motion of
network junctions (Eqg. (2)) and the boundaryconditions
in netwok junctions (Eg. (8)). The deternination of the
normalmodetransfaomationis arathercomplex andnon
trivial problem.It is mostly causedby the fact that the
two-dimensionalnetwok consideed contains two types
of “particles”: junctions and nonjunction bead, which
differ by their friction corstants (see Eq.(9)). The
detailedcalculdions arepresetedin Appendx. It shoud
be notedthatEq. (2) and(8) give the expressnsfor nor-

mal modetransformatdn, which are accuate within the
arhitrary numeical constantsor the certain functions of

wave vectors(seeAppendx). To obtainthe final expres-
siors for the transfamation from Caresiancoadinates
of netwok elenmentsto normal modes,it is necessarto

usethe addtional conditionsconceriing the transfama-
tion of dissipationfunction andpotential enegy of atwo-

dimersional netwok. The normd mode transfomation

(Eq. (4)) shoud transfam the dissipation function R(X)

of asquareGaussia network

,22

+ X3(Q3 1))

2§0x0 Q t) + < Z(Xi(g,j,t)

j=1

(179

to the diagonal form with equal weights of all normal
modes,i. e.

RQ) = %Co > Qi)

Moreower, in this transfamation the potentid enegy
of anetwok system

(17b)

n+1

:—KOZZZ (Qi];1) = Xo(Q) - L1))* (189
Q j=1 p=1
alsoshoud becomea diagond form
1 -
U(Q) =5 Kod_ D 2(1 - cosy,)Q (0 i) (18
0 v

Finally, for thetransfamationof Cartesiancoardinates
of non-jundion beadsof the netwok chains between
cross-linkswe obtain

1 1
Vn+tl N \/_
o exp(ify) sinjy, +sin(n+1—j)y

sin(n+ 1)y,

Z cosjyy + sinjy)Qu(0,0; yy;t)

Xi(a, 53 t) = > expli(abs + p6,)]

0£(00) v1

Y Qu(01, 025 w5 1)

\/_
V2f (93 W) sinjy,
- % expli(af; + ﬁ@z)] — cos(N+ 1)y, exp(—ify)
2

GXp( IHl)QZ(ela 02a l//27

=3 expli(aby + 46,)]

01#0 y3
0,70

V2t (0; yy) sinjyy ,
L= cos(n+ Dy expl—10;) 20 VY
V23D exp(ipl) sinjig Qu(0, 02 1)

0270 w3

exp(—i6;)

— > sinjysQu0,0:451) (193
v
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XZ(avﬁ7]7t) =

> > expli(ats + p62)]

1 1[ 1
vn+1 N \/é 640,00 ¥1
" exp(if) sinjy, +sin(n+1—j)w,

sin(n+ 1)y,
1 . o
+ WZ(COSWQ + sinjy,;)Qi(0, 0; yy;t)

V1

Qu(01, 02 w3 1)

V2 (B sinjy
1 — cos(n+ 1)y, exp(—ibs)

+ Z expli(abdy + p0s)]
exp(—i01)Qx(01, 023 w3; t) + Z Z expli(abdy + p0s)]

0170 3
00

V2 (b; ;) sinjyy

: . 01,02 w55t

1— cos(n+ 1)y, exp(—i6,) Qu(0s, 02 y25)
+ \/EZ Z exp(iafy) sinjw,'Q,(61, 0; w,'; )

0170 y%

exp(—i6)

+ ) sinjyyQu(0,0; )

w3

(19b)

Here n is the numberof beadsin the netwok chain
betweercross-links,w(0;) is the wavevecibr correspnd-
ing to both the intra- and interchain relaxationprocesses
(EqQ.(10) and (12)). The wave vector v, (Eg.(11) and
(13)), which is the purely intrachain quantiyy and does
not dependon the phase shift 6 betweemetwok cells, is
presentecstwo wave vectors:

_ m(2k—1)

cos(Nn+y,=-1 or y,= ] (209
and
" " an
cos(n+ 1y, =1 or y, = — (20b)

where k=1..n/2. The function f(@; w2) in Eq.(19) is
deternminedas

f@; W)

[ 2[1—cos(n+ 1)y, cos 01][1—cos(n+ 1)y, cos 0]
N 2—(cos 01+ cos b,) cos(n+ 1)y,

(21)

Onecanseefrom Eq.(19) that the normal coordinate
of atwo-dimensonal polymer netwok consising of mul-
tisegmemal Gawssianchans are separatednto two sets
(Q: and Q) correspnding to different branchesof the
relaxaton spectum. Normal modes Ql(é; wi;t) corre-
spondto the spectrumbranchcontaining both the intra-
and interchain relaxation processs. Normal modes
Qz(é; wat) are deternined by the purely intrachain
branchof the relaxationspectrum, which correspond to
the relaxation of network chairs with fixed ends.Note
that the normd mode transformatbn for nonjunction
beadqEq. (19)) hasarathercomplicatedform becaseof

the multiple degenerabn of relaxaton timest(y,) of the
purely intrachan branch of relaxation spectum. The
degenerabn of eachrelaxationtime z(y,) is equal to the
total numberof networkcells of a two-dimensionalGaus-
siannetwok, i. e. is equal to N2 In cortrastto nonjunc-
tion bead, the normal modetransfamation for netwok
junctionsdoesnot include the normd modest(é; wat)
determinedby relaxationtimes similar to those of poly-
mer chairs with fixed endsand, therefore,hasthe more
simpleform (seeEq. (19) atj = 0)

1 1 .
Xo(a, pit) = sz{;z expli(ad, + B62)]

w1
Qu(01, 0x; w3 1)

It shoud be noted that the transbrmationfrom Carte
sian coordinatesto normd modes(Eq. (19) and (22)) is
orthogoral but is not normalizel becauseit represets
both the rotation of Carkesianaxes(when the potential
enegy is transfamed (Eq. (18)) and the scalestretding
(when the dissipation function is transfamed (Eq. (17))
simultareously This scde stretchirg is causedy the dif-
ferencebetweenfriction constantsof junctions ¢, and
non-juncton beads;, (seekq. (9) and(17)). In paper2 of
this series we shall usethe normal mode transbrmation
construced to obtainthe exactanalytical expres®ns for
various local dynamt characeristics of a two-dimen-
sional regular netwok consising of multisggmental
Gaussiarchains.

(22)

3. Simplified coarse-grainedmodel of a two-
dimensionalpolymer network

As emphasizd in the previous Section the dynamic
behavior of the two-dimensioral polymer netwok may
be separatedinto intra- and interchainrelaxaton. A cer
tain “boundary” relaxationtime znain Of thesetwo types
of relaxation processsis the relaxationtime of the net-
work chainasa whole (seeEq. (16)). The interchain col-
lective relaxation of a netwok may be describedby
meansof a simplified coasse-graied network modelin
which the intrachain relaxaton processs are not taken
into consterationt->"12 The coaise-graind model of a
two-dimensional square netwolk corsists of junctions
(beads)and springs connectimg junctionsinto an unified
regularnetwok structure (Fig. 2). The elasticty constant
K of a singlespringbetweemeighboringjunctionscorre-
spondsto that of a multisegnental Gaussia chain
betweenthesejunctions All dissipatia effects relatedto
the friction of netwok chainswith respet to effective
viscousmediumare describedby the friction of netwok
junctions Thefriction constant of a netwok junctionis
determined by the friction of chan halves directy
attachel to a given junction. Thus, this simplified coarse-
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(a+1,8+1)

=G

(a,8+1)

K

Q=(a.p) (a+1,8)

Fig.2. An elematary cell of a simplified coarse-gramed
squarenetwork

grained model of a two-dimensioral polymer netwok

describesonly the collective motions of netwak chains
on scales greater than the average distance between
neighbaing cross-links.Note thatthe equilibrium proper

ties of the coarse-graiedmodelof a squarepolymer net-
work havebeenconsiderd in ref.!!

Every cell of a coase-graird netwok model is
markedby a two-camponen index Q = (a, ) (Fig. 2). It
is assumd that the two-dimensgonal netwok consistsof
N junctionsalong eachnetwok direction, the total num-
ber of squarecells in the netwok is equalto N2 The
equationof motion of a junction of the coase-graird
networkmodelis givenby:

—X(a, B; 1) + K[4X(a, f;t) = X(a + 1, B;1) —
- X((l,ﬂ +1 t) - X((X,ﬂ -1 t)] = Fg

where X(a, ;1) is the X projectionof the position vecta
of a netwokk junction Q = (e, 5), andFg, is the stochatic
Brownianforce™ As in the previaus Section the normal
mode treatmentwill be usedto obtain the soluions of
equatiors of mation of netwok junctions (Eq. (23)). We
shall constuct the transformaton from Caitesiancoordk
natesof netwok junctionsto normalmodesQ in thefol-
lowing form:

X(a—1,p:t)
(23)

X(a, f5t) = " (Assinaby + By cos aby)
o

x (A sin 0, + B, cos 0,)Q(0y, 0,;1) (24)

where A;, A;, B;, and B, are numeical consants,
0 =(0.,0,) is a two-compnent interchan wave vecta
determinng the phaseshift betweendisgacemets of
neighbaing netwok cells. The substituion of Eq.(24)

into Eq. (23) allows usto obtain the equaions of mation
of normal modes

%Q(T) + 2K (2 — cos by — cos 6,)Q(t) = Fg,

and therebre,the setof relaxationtimesof a two-dimen-
sioral coarsegrainednetwoik model

< (25)

S
2K (2 — cos 0, — cos 65)

(04, 0,) = (26)
Asin thecas of anetwok consistingof multisegnental
Gaussianchains,one canalso usethe peiiodic boundary
conditions for the coarse-graird netwok model consid-
ered Then,the equatiors of motion of boundaryjunctions
along thea direction of asquarenetwoik taketheform

X(1, B; 1) + K[4X(1, ;1) —
- X(1, 5+ L1)

X(Zaﬁ; t) -
—X(Lp-Lt)] =Fe

X(N, ;1)
(279

d
S Tdt

S-S X(N, 1)+ KIAX(N, i)~
—X(1,p+1t) —

X(N—1,4;t) —
X(1,5 = L1)] = Fe

The equatiors of motionsof boundaryjunctionsalong
the p netwok direction have a similar form. The com-
bined consider#ion of theseperiodichoundaryconditions
andthe normalmodetransfomation (Eq. (24)) allows us
to obtdn a set of interchain wave vectas 6 = (01;0,),
which is foundto be the same asfor the netwok of multi-
sgmentalGaussan chairs (seeEq. (7)). The correspond
ing relaxationtimes of a coarse-graired netwok model
are deternined by Eq.(26) and rangefrom a minimum
relaxationtime zmin = /8K (seeEq. (26) at 6= (n, 7)) to
infinity for the infinitely large netwok. Note that the
chamcterigic relaxationtime 7, of a coase-graied net-
work model has an order of magitude equa to the
relaxationtime of a chainbetweercross-links.

In the sameway asin the previous Secton, with the
useof Eqg.(24), (27) andthe condition of diagondization
of potentid enegy onecanobtain thefinal expressn for
thetransformatbn from Cariesiancoordnatesof netwok
junctionsto normalmodes

X(1,5:1)
(27b)

X(a, p;t) = ZCOb (a0, — 7 /4) cos(B0, —m/4)Q(0;t) (28)

where the interchan wave vecta 6 = (01,0,) is given by
Eq.(7). The normd mode transformation obtained is
orthogonad becaseit represets the rotation of Cartesian
axesonly. It shouldbe noted that this transfamation is
not unique.For exanple, onecanobtainthe normalmode
transformaton in a form similar to that for the junctions
of a network conskting of multisegmenial Gaussan
chans(seeEqg. (22)), namely
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X(a, ;1) Zexp (a01 + p0,)]Q(0; 1) (29

In Part2 of this serieswe shall usethe normal mode
transfamation obtainedto calculate local dynamic char
acterigics of the coase-graird model of a two-dimen-
sionalregular netwok.

4. Conclusion

To sum up, we obtaineda set of relaxationtimes anda
normal modetransfaomationfor a two-dimensioral requ-
lar networkconskting of multisegmenal Gaussianchairs
and for a simplified coarse-graired netwoik model as
well. In a following paperthe local dynamt charaderis-
tics of both dynamic netwok modelswill be calculaed
usingthesenormal mode transformatns. A comparison
betweenthe netwak of multisegmental chains and the
coarse-gained model of a netwok will be carried out
The relaxation properties of the polymer networkswith
two- and three-dinensional connectivty will be also
compaed.
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Appendix

Now we shall outline the methodof calcuating coefi-

cientsA;, Az, Bo, B1, and B, which determinethe trans-
formation from Cartesian coordinatesof elementsof a
two-dimensional square netwok to normal modes
(Eg. (4)). To obtain the normal mode transbrmationwe
have to combine the equationof mation of a junction
(Eq.(2)) and the boundary conditions in the junction
(Eg. (8)). Substiuting Eq.(4) into Eg.(8c) and (8d) we
obtaintherelation:

B(]:Bl:Bz:B (30)

The subsitution of normal mode transformatbn
(Eq.(4)) into the equaion of motion of a junction
(Eq. (2)) andinto the first two bounday condiionsin the
junction (Eq. (8a) and(8b)) givesthefollowing systemof
algelraic equatiors:

2B cos y — A;[sin i + exp(—i6;) sin ny/]
— Ay[sin y + exp(—i6,) sin ny]

— Bceosnylexp(—ib;) + exp(—if,)] = (313
Blexp(i0,) — cos(N+ 1)y] = A;sin(n+ 1)y (31b)
Blexp(i6,) — cos(n+ 1)y] = Agsin(n+ 1)y (310

The existencein the netwok systemconsiteredastwo
indepenént setsof wawve vectorsy; andy, (Eq. (12) and
(13)) leads to the appearace of two setsof normd coor
dinates Ql(l//l,H t) and Qz(l//z,ﬁ t). If sin(h+ 1)y # 0,
Eqg. (31b)and(31c)give thefollowing relations

exp(i0y) — cos(n+ L)y
sin(n+ 1)y

A =B (322)

exp(i0,) — cos(n+ L)y
sin(n+ 1)y

A, =B (32b)

The above relations should correspnd to the normal
modes Ql(yjl;é;t) deternined by the wawve vecbr v,
becausesin(n + 1)y, = 0 (seeEq. (11)). The substtution
of Eq.(32) into Eq. (4a) gives the following termsin the
normalmode transfamation for X, (a, 5;j;1):

BY > expli(a: + )]

0102 y1
o exp(if,) sinjy, +sin(n+1—j)w,
sin(n+ 1)y,

Qu(01, 02, w53t) (33)

Sucha form for thesetermsis valid for all values of 6,
and 0. (see Eq.(10)) with the excepton of vectas
0 =(0,0) andf = (n, ) whichleadto sin(n + 1)y» = 0. For
simplicity we shall assumethat 0 # (m,7). This means
thatthe numter of junctionsN alongever netwok direc-
tion is an odd numkber (seeEq.(7)). Naturally, one can
also corsider the casewhen N is an even numberin a
quite analgousway as odd N. For wave vecta y, at
6 =(0,0) Eq.(31)is satisfed identically at arhitrary coef
ficients A;, A;, and B # 0. Therefore, for the normal
mode transformatdn of X,(a,f;j;t) at yw.(0 = (0,0)) we
havethefollowing terms:

> (Beosjy, + Agsinjy,) Qu(0,0; wy;t) (34)

v

If sin(h+ 1)y =0andB =0, Eq.(31) leads to the rela-
tion:

A¢[1 — exp(—if;) cos(n+ 1)y]

+ Ag[1 — exp(—if;) cos(n+ 1L)w] =0 (35

This relation correspondgo normal modest(l//g;é; t)
andmay berewrittenin theform:

—-C

A= [1— exp(—i6;) cos(n+ 1)y]

(369

Cc

A = T (i) cos(n + 1)y

(36b)

Substititing Eq. (36) into normal mode transformation
of anon-juncton bead(Eq. (4a)),we obtainthefollowing
termsfor X, (a, f;];1)
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C( 1)° expli(aby + f6,)] sinjy,
—cos(N+ 1)y, exp(—ib,)

exp(—iQy) Qu(01, 023 w3 t)

Suchaform of thesetermsholdsonly if the denonina-
tor in Eq.(37) doesnot equal zera It is obvious that
Eq. (37)is valid for wavevecbrs v, = y; (seeEq. (20a)).
For w, = w3 (seeEq.(20b)) the termsgiven by Eq. (37)
have the singularity at 6, =0 and 6, = 0. To obtain the
contribution of suchtermsinto nhormalmodetransforma-
tion, it is necessarto useEq. (35) directly. Thenthe fol-
lowing termsfor X, (a,f;j;t) areobtained

2.2

(37)

Z Z Aexp(ifty) sin jy;'Qx(0, 05 w5’ 1) (389
0240 w5

S AusinjyrQu(0, 05wl 1) (38
7]

andfor Xx(a, 8;j;t)

Z ZAexp iady) sin iy, Qx(01,0; w,'; t) (393
0170 w3

D AosinjyyQy(0,0; w5 t) (39b)

173

It shouldbe especiallyemphasied thatall coeficients
A, A, A A B, andC in Eq.(33), (34), (37), (38), and

(39) may be the numericalconstantaaswell asthe func-

tions of wave vecbors 6 and w. Finally, to obtain these
coeficients it is necessar to usethe corditions of diago-
nalizationthe potential enegy anddissipation function of

a two-dimensonal polymer netwok (Eq.(17) and (18)).

Justafterthe useof theseconditionsconcernng transfa-

mation to diagonal form the function f(?; wa) (see
Eq.(21)) appearsin the final expres®ns for normal

modetransfomation (Eq. (19)).
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