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1. Intr oduction
Cross-linked polymersrepresenta broadandvery impor-
tantclassof materials.Much interestin cross-linkedpoly-
mers (polymer networks) is raised because they are
widely used for numerous technical applications.
Whereasthestatisticalpropertiesof cross-linkedpolymer
systemshave been studied thoroughly, the processes
determining their dynamic properties are not yet com-
pletely understoodin polymer physics in comparisonto
thoseof polymersolutions or melts.This is mainly dueto
a complex character of physical phenomena manifested
in polymer networks and to a great number of factors
which influencedynamic propertiesof cross-linkedpoly-
mersystems.

Polymer networks represent polymers in which the
macromoleculesareconnectedto eachotherby means of
chemical cross-linksandform anunified spatialstructure.
The fundamental featureof cross-linkedpolymersis that
their relaxation propertiesaredeterminednot only by the
behavior of individual polymer chainsbut alsoby thecol-
lective long-scale relaxation of network chains. These
collective interchain relaxationprocesseshaving charac-
teristic scalesgreater than the average length of chains
between cross-links arise from a strong connectivity
betweenall chainsin a network. As a result of the con-
nectivity betweenchains, it is impossible to separatethe
dynamic behavior of a given chain from those of other
chainsin contrastto polymer melts andsolutions.

Full Paper: The local relaxationpropertiesof polymer
networkswith a two-dimensionalconnectivityareconsid-
ered.We usethe mesh-likenetwork model in which the
averagepositions of junctions form the regular spatial
structure consisting of squarerepeatingunits (network
cells). The two-dimensionalpolymer network consisting
of “bead and spring” Rousechains and the simplified
coarse-grainednetwork model describingonly the large-
scalecollective relaxationof a network are studied.For
both dynamicnetworkmodelsthe setof relaxationtimes
andthe transformationfrom Cartesiancoordinatesof net-
work elementsto normal modesare obtained.Using the
normal mode transformationobtained,in Part 2 of this
seriesthe exact analytical expressionsfor various local
dynamiccharacteristicsof the polymernetworkhavinga
two-dimensionalconnectivitywill becalculated.
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An elementarycell of a two-dimensionalsquarenetworkcon-
sistingof multisegmental“beadandspring” chains
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Real cross-linked polymersrepresent the three-dimen-
sional network structuresas a rule. However, it is very
interesting to considersomespecial caseof a polymer
network with restricted geometry, namely, the polymer
network with a two-dimensional connectivity. Such a
polymer network may be realized, for example,in poly-
mer films, on the surfacesof polymer samples, etc.
Furthermore, the considerationof two-dimensionalpoly-
mernetworks is of specialinterestfrom thepoint of view
of the general theory of polymer networks because the
influenceof chainconnectivity on dynamic propertiesof
two-dimensional polymer networks is expectedto be
weakerascomparedto thethree-dimensional case. In this
seriesof paperswe consider the relaxationpropertiesof
polymer networks having a two-dimensional connectiv-
ity. In general,differentdynamic modelsof polymer net-
works with sucha type of connectivity may be consid-
ered. For example,the dynamics of a two-dimensional
network on the plane may be studied.In this paperwe
shall focus on the mesh-like polymer network having a
two-dimensional connectivity in the three-dimensional
Cartesian space.This dynamic network model may be
visually imagedasa fishing net in water. Moreover, the
regularpolymer network is considered.This means that
all network chainshaveidenticalcontourlengths,andthe
average positions of junctions form the regularnetwork
structureconsistingof squarecells if thenetwork wereto
bestretchedon theplane.

The equilibrium propertiesof a squareplanarnetwork
have been studied previously by Ronka and Allegra1].
Theyhaveconsideredthesimplified coarse-grainedmodel
of atwo-dimensionalsquarenetwork in whicha longflex-
ible chainbetweenneighboringnetwork junctionsis mod-
eledby a singleGaussianspring. It hasbeenshown1] that
themean-squareradiusof gyrationof thenetworkhaving
a two-dimensionalconnectivity, increaseslogarithmically
with the total numberof chains in thenetwork. This is in
contrastto the three-dimensional Gaussian networks in
whichtheanalogousequilibrium quantity doesnotdepend
onthetotal numberof network chains.[1]

The dynamic behavior of two-dimensional squarenet-
works consistingof “beadandspring” Rousechains has
beenconsideredby Chompff andDuiser.[2] The mechani-
cal spectrumof relaxationtimes s of a two-dimensional
polymer network hasbeenobtained.It hasbeenshown2]

that the relaxationspectrumof a squareregularnetwork
hasusualRouseanbehavior1/

���
s
p

in the region of intra-
chainrelaxation(i. e. at timessmaller thanthe maximum
relaxation time of a chain between cross-links) and
behavesas 1/s in the region of interchain collective
relaxation.Note that thebehavior of theinterchainpartof
the relaxation spectrum of a two-dimensional polymer
network differs from that of three-dimensionalnetworks
in which the interchain long-time tail of relaxation spec-
trum behavesas1/s3/2 (see,for example, refs.[3–7]).

The main aim of this series of papersis to study in
detail the local dynamic characteristics of junctions and
non-junction chainsegmentsof thepolymer network with
a two-dimensional connectivity. These important local
characteristics were not consideredso far and may be
manifested in dielectric relaxation, dynamic modulus of
cross-linked polymers, incoherent dynamic scattering,
NMR, etc. Furthermore, the theoretical results of this
work may bedirectly comparedwith dataof recent com-
putersimulation of regulartwo-dimensional networks.[8, 9]

The paperis organized as follows. The two-dimensional
regular network consisting of multisegmental Gaussian
chainsand the simplified coarse-grained network model
describing only the large-scalecollective relaxationof a
networkareconsidered.For both dynamicnetwork mod-
els the set of relaxationtimes will be obtained. Further-
more,we shall construct the transformation from Carte-
sian coordinatesof network elements to normal coordi-
nates(normalmodes)for bothnetwork models.Theexact
analyticalexpressions for various local dynamic charac-
teristics of regular polymer networks having a two-
dimensional connectivity wil l be obtainedin a following
paperof this series using thenormalmodetransformation
constructed.

2. Two-dimensional polymer network
consistingof multisegmentalGaussian
chains

2.1. Dynamicmodelof a network

Thetwo-dimensional polymernetwork consistingof mul-
tisegmental Gaussian chainsis considered.Such a type of
networksystemrepresentsthetwo-dimensional analogof
a cubic Gaussian network considered previously.[7] It
shouldbeespeciallyemphasizedthat thenetworkconsid-
ered representsa two-dimensionalstructure only in the
senseof connectivity of network chains, i. e. we consider
the dynamics of a two-dimensional Gaussiannetwork in
the three-dimensional Cartesian space(“fishing net in
water”). We study the dynamics of mesh-like network
model, and the average positions of network junctions
form the regular spatial structure consisting of square
cells. An elementary cell (or, a repeating unit) of the
squareregular network consists of a junction and two
“bead and spring” Rouse chains[10] (Fig. 1). A phantom
Gaussiannetwork is considered,the excluded volume
interactionsandentanglementeffectsareneglected.

EachRousechain betweencross-linkscontains n beads
and,correspondingly, (n + 1) subchains connecting them.
All subchainshave identical contour lengths and act as
springs with the elasticity constant K0. The dynamic
behavior of the Gaussian network, moving relative to
effective viscous medium under stochastic Brownian
forces, is studied. The friction constants of a network
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junctionanda non-junction beadof thenetwork chainare
denotedas &jun and &0 , respectively. Only the X projec-
tionsof positionvectors of thenetwork elementsarecon-
sideredbecauseX, Y, and Z projections for a Gaussian
network are independentof eachother. Eachcell of the
two-dimensional squarenetwork is marked by a two-
component index X = (a,b) (Fig. 1). A network consists
of N junctions(cross-links) alongeachnetwork direction,
i. e. the indices a and b changefrom 1 to N. Therefore,
the total numberof squarenetwork cells is equal to N2.
The X coordinatesof a network junction anda non-junc-
tion beadare denoted as X0(X; t) and Xp(X; j; t), respec-
tively. Hereindex p means thenumberof multisegmental
Gaussianchains in the network cell X = (a,b) (i. e.
p = 1;2 for square network) andindex j = 1...n means the
position of a non-junction beadalong the networkchain
betweenneighboring junctions (j = 0 and j = n + 1 in the
caseof anetwork junction).

The equation of motion of a non-junction beadof the
networkchainhasthefollowing form:

&0
d
dt

Xp�X; j; t� � K0�2Xp�X; j; t�
ÿ Xp�X; j � 1; t� ÿ Xp�X; j ÿ 1; t�� � FBr �1�

whereFBr is thestochastic Brownianforce(see,for exam-
ple, ref.[11]). The equations of motions for non-junction
beadsof a two-dimensionalnetwork havethe sameform
asthoseof a three-dimensional cubic network.[7] Thedif-
ferencebetweentwo- andthree-dimensional polymer net-
works consisting of “bead and spring” Rouse chains is
manifested only in the equations of motion of network
junctions. The network junction of a two-dimensional
squarenetwork is connected by subchainsto four neigh-
boring non-junction beadsin contrastto the cubic net-
work in which the junction is connected to six non-junc-

tion beads. The corresponding equationof motion of a
junction of the networkwith a two-dimensionalconnec-
tivity is givenby:

&jun
d
dt

X0�a; b; t� � K0�4X0�a; b; t� ÿ X1�a; b; 1; t�
ÿ X1�aÿ 1; b; n; t� ÿ X2�a; b; 1; t�
ÿ X2�a; b ÿ 1; n; t�� � FBr �2�

The main aim of this seriesof papersis to study the
local dynamic characteristicsof a two-dimensional poly-
mernetwork, which dependslightly on theboundarycon-
ditions of the macroscopic network as a whole. In the
consideration of analogous local characteristics of a
three-dimensional polymer network, the periodic bound-
ary conditions have been used.[7] Moreover, the same
boundaryconditionshavebeenalsousedin recent com-
puter simulations of two-dimensional polymer net-
works.[8, 9] Therefore,thesquarenetwork systemwith per-
iodic boundary conditions wil l be considered in this
paper. Theseboundary conditionsmeanthat

X1�0; b; n; t� � X1�N; b; n; t� �3a�

X2�a; 0; n; t� � X2�a;N; n; t� �3b�
As it wil l be shown below, the use of the periodic

boundaryconditionsallowsusto obtaintheexactanalyti-
cal solution for agivenmechanical systemat thearbitrary
numbersof network junctionsN andnon-junction beads
n in a network chainsbetweencross-links.

2.2. Normalmodesandrelaxationtimes

In order to obtain the analytical expressions for various
dynamic characteristics of a two-dimensional Gaussian
network, it is necessary to solvethe equations of motion
of network elements(Eq. (1) and (2)). We shall usethe
normal mode treatment (see,for example, ref.[6, 7,11]). The
general form of transformation from Cartesian coordi-
nates X of network elements to normal coordinatesQ
(normalmodes)hasthefollowing form:

Xp�a; b; j; t� �
X
h1h2

X
w

exp�iah1� exp�bh2�

6�Ap sin jw� Bp cos jw�Q�h1; h2;w; t� �4a�

X0�a; b; t� �
X
h1h2

X
w

exp�iah1� exp�ibh2�

NB0 NQ�h1; h2;w; t� �4b�
Here~h = (h1,h2) is the interchain wave vector deter-

mining the phaseshift betweendisplacementsof neigh-
boring network cells for a givennormal mode.The inter-
chain wavevector of squarepolymer network is the two-

Fig. 1. An elementarycell of a two-dimensionalsquarenet-
work consistingof multisegmental “beadandspring” chains
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componentquantityin contrastto thecubicGaussiannet-
work wherewavevector ~h hasthreecomponents4,7]. The
intrachain wave vector w determines the phase shift
betweenneighboring non-junction beadsalong the net-
work chain. Note that thecoefficients A1, A2, B0, B1, and
B2 maydependon wavevectorsw and~h.

Substituting thenormalmodetransformation (Eq. (4a))
into the equations of motion of non-junction beads
(Eq. (1)) one can obtain the equations of motion of nor-
mal modesQ

&0
d
dt

Q�t� � K0 2�1ÿ cosw�Q�t� � FBr�Q� �5�

where FBr is the stochastic Brownian force11]. The time
dependenceof eachnormalmodehasthesimpleform Q(t)
= Q(0)exp[–t/s] wheres is the relaxation time of a given
normalmode.The equations of motion of normal modes
without stochastic Brownian forces FBr give the set of
relaxationtimesof atwo-dimensionalGaussiannetwork

s�w� � &0
K0 2�1ÿ cosw� �6�

Note that the expression for relaxation timesof a two-
dimensional network in the formal sensehas a similar
form to that for a singlechain.[10,11] However, in the case
of a network the intrachain wave vectorw hasa rather
complicated structure and dependson the interchain
wave vector ~h. Using the periodic boundaryconditions
(Eq. (3)) and the normal mode transformation (Eq. (4a))
onecanobtain thecomponentsof interchain wave vector
~h = (h1,h2)

h1;2 � 2p
N

S1;2; S1;2 � 0; :::;Nÿ 1; �7�

where N is the numberof network junctions along the
givennetworkdirection.

In order to obtain the intrachain wave vector w and,
therefore, therelaxationtimesof a two-dimensionalGaus-
sian network, it is necessaryto combine the equation of
motion of a network junction (Eq. (2)) andthe additional
boundaryconditionsin thenetwork junctions,namely,

X0�a; b; t� � X1�aÿ 1; b; n� 1; t� �8a�

X0�a; b; t� � X2�a; b ÿ 1; n� 1; t� �8b�

X0�a; b; t� � X1�a; b; 0; t� �8c�

X0�a; b; t� � X2�a; b; 0; t� �8d�
The exact analytical solution for a given two-dimen-

sionalmechanicalsystembecomespossible if the fricti on
constantof a network junction is two times greaterthan
thatof a non-junctionbead

&jun � 2&0 �9�

This conditioncorrespondsto thesuperposition of non-
junctionbeads(with friction constant &0) of two intersect-
ing multisegmentalchains in thenetwork junction. It this
case the equation of motion of a network junction
(Eq. (2)) maybepresentedin theformal senseasthesum
of two equations of motion of non-junction beads
(Eq. (1)). In othercases,i. e. if Eq. (9) is not fulfilled , the
solution may be obtained using numerical calculations.
Note that the rigorous analytical solution for a three-
dimensional network exists if &jun � 3&0 (seeref.[4,7]). The
combination of Eq. (2), (8), and (9) gives two different
setsof wavevectorsw (comparewith Eq. (9) and(10) in
ref.[7] for a three-dimensional polymernetwork)

cos�n� 1�w1 �
1
2
�cos h1 � cos h2� �10�

sin�n� 1�w2 � 0 �11�
Therefore, the intrachain wave vector w of a two-

dimensional polymernetworkhasthefollowing structure

w1 �
2p

n� 1
l l

1
n� 1

arccos
1
2
�cos h1 � cos h2�;
l � 0:::n=2 �12�

w2 �
p

n� 1
k; k � 1:::n �13�

In Eq. (12) sign+ shouldbechosen at l = 0 andsigns l
at l 6� 0. Note that Eq. (12) is written for the casewhen
the quantity n is an evennumber. It doesnot restrict the
theory becauseone can consider the case of odd n as
well.

It is seenthat the total numberof wavevectorsw at a
givenvalueof interchain wavevector~h = (h1,h2) is equal
to thetotal number of degreesof freedom in a squarenet-
work cell X = (a,b), namely, is equal to (2n + 1). Eq. (12)
and(13) indicatethe existenceof two differentbranches
of relaxationspectrum: s(w1) ands(w2). Thebranchs(w2)
determinedby wave vector w2 (see Eq. (13)) doesnot
dependon the phaseshift ~h betweendisplacementsof
neighboring network cellsandis very similar to theset of
relaxationtimes of a single Rousechain.[10,11] The main
and more complicated branch of relaxation spectrum
s(w1) dependson thephaseshift alongthenetwork chain
2lp/(n + 1) andon the phaseshift betweennetwork cells
~h aswell (seeEq.(12)). If l in Eq. (12) is equal to zero,
thewavevector

wnet�h1; h2� X w1�l � 0� � 1
n� 1

arccos
1
2
�cos h1 � cos h2� �14�

andcorresponding relaxation timess(wnet) do not depend
on the motionsof network chains insideof the cells of a
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network and describe only the long-scale collective
relaxationcorrespondingto thedisplacementsof network
cells.If l 6� 0 (seeEq. (12)) eachrelaxationtime of a net-
work chains(w1) splits into theband consistingof a great
numberof sublinesdueto the changeof interchainwave
vector~h = (h1,h2). Note that thebroadeningDw1(l) = wnet

of intrachainmodes(and corresponding relaxation time)
is smaller thanthe difference(w1(l + 1) –w1(l)) between
neighboring w1(l) values at l 6� 0. This means that the
bandscorresponding to thebroadenedrelaxation timesof
a networkchain arenot superposed.

A certaincharacteristic relaxation time schain existsin a
network system,which separatesthe purely interchain
motionswith relaxationtimess(wnet) andthe small-scale
intrachain motions with relaxation times s(w1) at l 6� 0
and s(w2), which are determined by the phase shift
betweenneighboringbeads alongthenetwork chain. This
relaxationtime schain represents the maximum relaxation
time of a network chain as a whole. On the other hand,
thequantity schain is equalto theminimumrelaxation time
of long-scaleinterchain motionscorrespondingto thedis-
placementsof network cells.To sumup,onecanwrite

schain� s�w1�jl�1
~h��p;p�

� s�w2�jk�1 � s�wnet�j~h��p;p� �15�

UsingEq. (6), (12),and(13) onecanobtain thecharac-
teristicrelaxationtime

schain X
4
p2
�n� 1�2s0 �16�

wheren is thenumber of beadsin a chain betweencross-
links ands0 = &0 /4K0 is the relaxationtime of a Gaussian
subchainor theminimumrelaxationtime of a two-dimen-
sionalnetwork (seeEq. (6) atw = p).

In paper2 of this serieswe shallusethetransformation
from Cartesiancoordinatesto normalmodesto calculate
local dynamiccharacteristicsof a two-dimensional poly-
mer network. For example, the autocorrelationfunctions
pX(0)X(t)P of theX projectionsof junctionsandnon-junc-
tion beads,which aremanifested in mean-squaredispla-
cements, may be presentedusing normal mode transfor-
mationasthe sumof autocorrelationfunctionsof normal
modespQ(0)Q(t)P which relax according to the simple
exponential law. In order to constructthe normal mode
transformation, five coefficientsA1, A2, B0, B1, andB2 in
Eq. (4) mustbeobtainedusing theequations of motion of
network junctions (Eq. (2)) and the boundaryconditions
in network junctions (Eq. (8)). The determination of the
normalmodetransformationis a rathercomplex andnon-
trivial problem. It is mostly causedby the fact that the
two-dimensionalnetwork considered contains two types
of “particles”: junctions and non-junction beads, which
differ by their friction constants (see Eq. (9)). The
detailedcalculationsarepresentedin Appendix. It should
benotedthatEq. (2) and(8) give theexpressionsfor nor-

mal modetransformation, which are accurate within the
arbitrary numerical constantsor the certain functionsof
wave vectors(seeAppendix). To obtainthe final expres-
sions for the transformation from Cartesiancoordinates
of network elementsto normal modes,it is necessary to
usethe additional conditionsconcerning the transforma-
tion of dissipationfunctionandpotentialenergy of a two-
dimensional network. The normal mode transformation
(Eq. (4)) should transform the dissipation function R(X)
of a squareGaussian network

R�X� � 1
2

X
X

"
2&0 _X2

0�X; t� � &0
Xn

j�1

� _X2
1�X; j; t�

� _X2
2�X; j; t��

#
�17a�

to the diagonal form with equal weights of all normal
modes,i. e.

R�Q� � 1
2
&0
X
~h

X
w

_Q2�~h;w; t� �17b�

Moreover, in this transformation the potential energy
of a network system

U�X�� 1
2

K0

X
X

Xn�1

j�1

X2

p�1

�Xp�X; j; t�ÿXp�X; jÿ1; t��2 �18a�

alsoshould becomea diagonal form

U�Q� � 1
2

K0

X
~h

X
w

2�1ÿ coswp�Q2�~h;w; t� �18b�

Finally, for the transformationof Cartesiancoordinates
of non-junction beadsof the network chains between
cross-linksweobtain

X1�a; b; j; t�� 1�����������
n� 1
p 1

N

"
1���
2
p

X
~h 6��0;0�

X
w1

exp�i�ah1 � bh2��

6
exp�ih1� sin jw1 � sin�n� 1ÿ j�w1

sin�n� 1�w1

Q1�h1; h2;w1; t�

� 1���
2
p

X
w1

�cos jw1 � sin jw1�Q1�0; 0;w1; t�

ÿ
X
~h;w29

exp�i�ah1 � bh2��
���
2
p

f �~h;w29� sin jw29
1ÿ cos�n� 1�w29 exp�ÿih1�

exp�ÿih1�Q2�h1; h2;w29; t� ÿ
X
h1 6�0
h2 6�0

X
w299

exp�i�ah1 � bh2��

exp�ÿih1�
���
2
p

f �~h;w299� sin jw299
1ÿ cos�n� 1�w299 exp�ÿih2� Q2�h1; h2;w299; t�

�
���
2
p X

h2 6�0

X
w299

exp�ibh2� sin jw299Q2�0; h2;w299; t�

ÿ
X
w299

sin jw299Q2�0; 0;w299; t�
#

�19a�
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X2�a; b; j; t�� 1�����������
n� 1
p 1

N

"
1���
2
p

X
~h 6��0;0�

X
w1

exp�i�ah1 � bh2��

6
exp�ih2� sin jw1 � sin�n� 1ÿ j�w1

sin�n� 1�w1

Q1�h1; h2;w1; t�

� 1���
2
p

X
w1

�cos jw1 � sin jw1�Q1�0; 0;w1; t�

�
X
~h;w29

exp�i�ah1 � bh2��
���
2
p

f �~h;w29� sin jw29
1ÿ cos�n� 1�w29 exp�ÿih2�

exp�ÿih1�Q2�h1; h2;w29; t� �
X
h1 6�0
h2 6�0

X
w299

exp�i�ah1 � bh2��

exp�ÿih1�
���
2
p

f �~h;w299� sin jw299
1ÿ cos�n� 1�w299 exp�ÿih2� Q2�h1; h2;w299; t�

�
���
2
p X

h1 6�0

X
w299

exp�iah1� sin jw299Q2�h1; 0;w299; t�

�
X
w299

sin jw299Q2�0; 0;w299; t�
#

�19b�

Here n is the numberof beadsin the network chain
betweencross-links,w(h1) is thewavevector correspond-
ing to both the intra- and interchain relaxationprocesses
(Eq. (10) and (12)). The wave vector w2 (Eq. (11) and
(13)), which is the purely intrachain quantity and does
not dependon thephaseshift~h betweennetwork cells, is
presentedastwo wave vectors:

cos�n� 1�w29 � ÿ1 or w29 �
p�2kÿ 1�

n� 1
�20a�

and

cos�n� 1�w299 � 1 or w299 �
2pk

n� 1
�20b�

where k = 1...n/2. The function f (~h;w2) in Eq. (19) is
determinedas

f �~h;w2�

�
���������������������������������������������������������������������������������������������������
2�1ÿcos�n�1�w2 cos h1��1ÿcos�n�1�w2 cos h2�

2ÿ�cos h1�cos h2� cos�n�1�w2

s
�21�

Onecanseefrom Eq. (19) that the normal coordinates
of a two-dimensional polymer network consisting of mul-
tisegmental Gaussianchains are separatedinto two sets
(Q1 and Q2) corresponding to different branchesof the
relaxation spectrum. Normal modes Q1(~h;w1; t) corre-
spondto the spectrumbranchcontaining both the intra-
and interchain relaxation processes. Normal modes
Q2(~h;w2; t) are determined by the purely intrachain
branchof the relaxationspectrum, which corresponds to
the relaxation of network chains with fixed ends.Note
that the normal mode transformation for non-junction
beads(Eq. (19)) hasa rathercomplicatedform becauseof

themultiple degeneration of relaxation timess(w2) of the
purely intrachain branch of relaxation spectrum. The
degeneration of eachrelaxationtime s(w2) is equal to the
total numberof networkcellsof a two-dimensionalGaus-
siannetwork, i. e. is equal to N2. In contrast to non-junc-
tion beads, the normal modetransformation for network
junctionsdoesnot include the normal modesQ2(~h;w2; t)
determinedby relaxationtimes similar to those of poly-
mer chains with fixed endsand, therefore,hasthe more
simpleform (seeEq. (19) at j = 0)

X0�a; b; t� � 1�����������������
2�n� 1�p 1

N

X
~h

X
w1

exp�i�ah1 � bh2��

Q1�h1; h2;w1; t� �22�
It should be noted that the transformationfrom Carte-

sian coordinatesto normal modes(Eq. (19) and (22)) is
orthogonal but is not normalized becauseit represents
both the rotation of Cartesianaxes(when the potential
energy is transformed(Eq. (18)) and the scalestretching
(when the dissipation function is transformed (Eq. (17))
simultaneously. This scale stretching is causedby thedif-
ferencebetweenfricti on constantsof junctions &jun and
non-junction beads&0 (seeEq.(9) and(17)). In paper2 of
this series we shall usethe normal modetransformation
constructed to obtainthe exactanalytical expressions for
various local dynamic characteristics of a two-dimen-
sional regular network consisting of multisegmental
Gaussianchains.

3. Simplified coarse-grainedmodelof a two-
dimensionalpolymer network

As emphasized in the previous Section, the dynamic
behaviorof the two-dimensional polymer network may
be separatedinto intra- and interchain relaxation. A cer-
tain “boundary” relaxationtime schain of thesetwo types
of relaxation processes is the relaxationtime of the net-
work chainasa whole (seeEq. (16)). The interchain col-
lective relaxation of a network may be describedby
meansof a simplified coarse-grained network model in
which the intrachain relaxation processes are not taken
into consideration.[1, 5–7,12] The coarse-grained modelof a
two-dimensional square network consists of junctions
(beads)and springs connecting junctions into an unified
regularnetwork structure(Fig. 2). The elasticity constant
K of a singlespringbetweenneighboringjunctionscorre-
sponds to that of a multisegmental Gaussian chain
betweenthesejunctions. All dissipation effects relatedto
the friction of network chainswith respect to effective
viscousmediumaredescribedby the friction of network
junctions. The friction constant& of a network junction is
determined by the friction of chain halves directly
attached to a given junction. Thus,this simplified coarse-
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grained model of a two-dimensional polymer network
describesonly the collective motionsof network chains
on scales greater than the averagedistance between
neighboring cross-links.Note that theequilibrium proper-
tiesof thecoarse-grainedmodelof a squarepolymer net-
work havebeenconsidered in ref.[1]

Every cell of a coarse-grained network model is
markedby a two-component index X = (a,b) (Fig. 2). It
is assumed that the two-dimensional network consistsof
N junctionsalongeachnetwork direction, the total num-
ber of squarecells in the network is equal to N2. The
equationof motion of a junction of the coarse-grained
networkmodelis givenby:

&
d
dt

X�a; b; t� � K�4X�a; b; t�ÿX�a� 1; b; t�ÿX�aÿ1; b; t�
ÿ X�a; b � 1; t� ÿ X�a; b ÿ 1; t�� � FBr �23�

whereX(a,b; t) is the X projectionof the position vector
of a network junction X = (a,b), andFBr is the stochastic
Brownianforce.[11] As in thepreviousSection,thenormal
mode treatmentwill be usedto obtain the solutions of
equations of motion of network junctions (Eq. (23)). We
shall construct the transformation from Cartesiancoordi-
natesof network junctionsto normalmodesQ in the fol-
lowing form:

X�a; b; t� �
X
~h

�A1 sin ah1 � B1 cos ah1�

6�A2 sin bh2 � B2 cos bh2�Q�h1; h2; t� �24�
where A1, A2, B1, and B2 are numerical constants,
~h = (h1,h2) is a two-component interchain wave vector
determining the phaseshift betweendisplacements of
neighboring network cells. The substitution of Eq. (24)

into Eq. (23) allows us to obtain the equations of motion
of normal modes

&
d
dt

Q�t� � 2K�2ÿ cos h1 ÿ cos h2�Q�t� � FBr �25�

and, therefore,thesetof relaxationtimesof a two-dimen-
sional coarse-grainednetwork model

s�h1; h2� � &

2K�2ÿ cos h1 ÿ cos h2� �26�

As in thecaseof anetwork consistingof multisegmental
Gaussianchains,onecanalsousethe periodic boundary
conditions for the coarse-grained network model consid-
ered. Then,theequationsof motion of boundaryjunctions
along thea directionof asquarenetwork taketheform

&
d
dt

X�1; b; t� � K�4X�1; b; t� ÿ X�2; b; t� ÿ X�N; b; t�
ÿ X�1; b � 1; t� ÿ X�1; b ÿ 1; t�� � FBr �27a�

&
d
dt

X�N; b; t��K�4X�N; b; t�ÿX�Nÿ1; b; t�ÿX�1; b; t�
ÿ X�1; b � 1; t� ÿ X�1; b ÿ 1; t�� � FBr �27b�

The equations of motionsof boundaryjunctionsalong
the b network direction have a similar form. The com-
binedconsideration of theseperiodicboundaryconditions
andthe normalmodetransformation (Eq. (24)) allows us
to obtain a set of interchain wave vectors ~h = (h1;h2),
which is foundto bethesameasfor thenetwork of multi-
segmentalGaussianchains (seeEq. (7)). Thecorrespond-
ing relaxation times of a coarse-grained network model
are determined by Eq.(26) and rangefrom a minimum
relaxation time smin = &/8K (seeEq. (26) at~h = (p,p)) to
infinity for the infinitely large network. Note that the
characteristic relaxationtime smin of a coarse-grainednet-
work model has an order of magnitude equal to the
relaxationtime of a chainbetweencross-links.

In the sameway as in the previous Section, with the
useof Eq. (24), (27) andthe condition of diagonalization
of potential energy onecanobtain thefinal expression for
the transformation from Cartesiancoordinatesof network
junctionsto normalmodes

X�a; b; t�� 2
N

X
~h

cos�ah1ÿp=4� cos�bh2ÿp=4�Q�h; t� �28�

where the interchain wavevector ~h = (h1,h2) is given by
Eq. (7). The normal mode transformation obtained is
orthogonal becauseit represents the rotation of Cartesian
axesonly. It shouldbe noted that this transformation is
not unique.For example,onecanobtainthenormalmode
transformation in a form similar to that for the junctions
of a network consisting of multisegmental Gaussian
chains(seeEq. (22)), namely,

Fig. 2. An elementary cell of a simplified coarse-grained
squarenetwork
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X�a; b; t� � 1
N

X
~h

exp�i�ah1 � bh2��Q�h; t� �29�

In Part 2 of this serieswe shall usethe normal mode
transformation obtainedto calculate local dynamic char-
acteristics of the coarse-grained model of a two-dimen-
sionalregular network.

4. Conclusion
To sum up, we obtaineda set of relaxationtimes and a
normalmodetransformationfor a two-dimensional regu-
lar networkconsistingof multisegmental Gaussianchains
and for a simplified coarse-grained network model as
well. In a following paperthe local dynamic characteris-
tics of both dynamic network modelswil l be calculated
usingthesenormal mode transformations.A comparison
betweenthe network of multisegmental chains and the
coarse-grained model of a network wil l be carried out.
The relaxation properties of the polymer networkswith
two- and three-dimensional connectivity wil l be also
compared.
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Appendix
Now we shall outline the methodof calculating coeffi-
cientsA1, A2, B0, B1, andB2 which determinethe trans-
formation from Cartesian coordinatesof elementsof a
two-dimensional square network to normal modes
(Eq. (4)). To obtain the normal modetransformationwe
have to combine the equationof motion of a junction
(Eq. (2)) and the boundary conditions in the junction
(Eq. (8)). Substituting Eq. (4) into Eq. (8c) and (8d) we
obtaintherelation:

B0 � B1 � B2 � B �30�
The substitution of normal mode transformation

(Eq. (4)) into the equation of motion of a junction
(Eq. (2)) andinto the first two boundary conditions in the
junction (Eq. (8a)and(8b)) givesthefollowing systemof
algebraic equations:

2Bcoswÿ A1�sinw� exp�ÿih1� sin nw�
ÿ A2�sinw� exp�ÿih2� sin nw�
ÿ Bcos nw�exp�ÿih1� � exp�ÿih2�� � 0 �31a�

B�exp�ih1� ÿ cos�n� 1�w� � A1 sin�n� 1�w �31b�

B�exp�ih2� ÿ cos�n� 1�w� � A2 sin�n� 1�w �31c�

Theexistencein thenetwork systemconsideredastwo
independentsetsof wave vectorsw1 andw2 (Eq. (12) and
(13)) leads to the appearance of two setsof normal coor-
dinates Q1(w1;~h; t) and Q2(w2;~h; t). If sin(n + 1)w 6� 0,
Eq. (31b)and(31c)give thefollowing relations:

A1 � B
exp�ih1� ÿ cos�n� 1�w

sin�n� 1�w �32a�

A2 � B
exp�ih2� ÿ cos�n� 1�w

sin�n� 1�w �32b�

The above relations should correspond to the normal
modes Q1(w1;~h; t) determined by the wave vector w1

becausesin(n + 1)w2 = 0 (seeEq. (11)). The substitution
of Eq. (32) into Eq. (4a) gives the following terms in the
normalmodetransformation for Xp(a,b; j; t):

B
X
h1h2

X
w1

exp�i�ah1 � bh2��

6
exp�ihp� sin jw1� sin�n�1ÿ j�w1

sin�n� 1�w1

Q1�h1; h2;w1; t� �33�

Sucha form for thesetermsis valid for all values of h1

and h2 (see Eq. (10)) with the exception of vectors
~h = (0,0) and~h = (p,p) which leadto sin(n + 1)w = 0. For
simplicity we shall assumethat~h 6� (p,p). This means
thatthenumberof junctionsN alongevery network direc-
tion is an odd number (seeEq. (7)). Naturally, one can
also consider the casewhen N is an even numberin a
quite analogous way as odd N. For wave vector w1 at
~h = (0,0) Eq. (31) is satisfied identically at arbitrary coef-
ficients A1, A2, and B 6� 0. Therefore, for the normal
mode transformation of Xp(a,b; j; t) at w1(~h = (0,0)) we
havethefollowing terms:X

w1

�Bcos jw1 � Ap sin jw1�Q1�0; 0;w1; t� �34�

If sin(n + 1)w = 0 andB = 0, Eq.(31) leads to the rela-
tion:

A1�1ÿ exp�ÿih1� cos�n� 1�w�
� A2�1ÿ exp�ÿih2� cos�n� 1�w� � 0 �35�

This relationcorrespondsto normalmodesQ2(w2;~h; t)
andmayberewrittenin theform:

A1 � ÿC
�1ÿ exp�ÿih1� cos�n� 1�w� �36a�

A2 � C
�1ÿ exp�ÿih2� cos�n� 1�w� �36b�

Substituting Eq. (36) into normalmode transformation
of a non-junction bead(Eq. (4a)),we obtainthefollowing
termsfor Xp(a,b; j; t)
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X
~h

X
w2

C�ÿ1�p exp�i�ah1 � bh2�� sin jw2

1ÿ cos�n� 1�w2 exp�ÿihp�
exp�ÿiQ1�Q1�h1; h2;w2; t� �37�

Sucha form of thesetermsholdsonly if thedenomina-
tor in Eq. (37) does not equal zero. It is obvious that
Eq. (37) is valid for wavevectorsw2 = w29 (seeEq. (20a)).
For w2 = w299 (seeEq. (20b)) the termsgiven by Eq. (37)
have the singularity at h1 = 0 and h2 = 0. To obtain the
contribution of suchtermsinto normalmodetransforma-
tion, it is necessary to useEq. (35) directly. Thenthe fol-
lowing termsfor X1(a,b; j; t) areobtained:X

h2 6�0

X
w299

Aexp�ibh2� sin jw299Q2�0; h2;w299; t� �38a�

X
w299

A1 sin jw299Q2�0; 0;w299; t� �38b�

andfor X2(a,b; j; t)X
h1 6�0

X
w299

~Aexp�iah1� sin jw299Q2�h1; 0;w299; t� �39a�

X
w299

A2 sin jw299Q2�0; 0;w299; t� �39b�

It shouldbe especiallyemphasized that all coefficients
A1, A2, A, ~A, B, and C in Eq. (33), (34), (37), (38), and

(39) may be the numericalconstantsaswell asthe func-
tions of wave vectors~h and w. Finally, to obtain these
coefficients it is necessary to usetheconditionsof diago-
nalizationthepotential energy anddissipationfunction of
a two-dimensional polymer network (Eq. (17) and (18)).
Justafter theuseof theseconditionsconcerning transfor-
mation to diagonal form the function f (~h;w2) (see
Eq. (21)) appearsin the final expressions for normal
modetransformation (Eq. (19)).
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