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Abstract—A dynamic model for the viscoelastic properties of inhomogeneous polymer networks is proposed.
A polymer network ismodeled as an assembly of noninteracting crosslinked regions (domains) of various sizes.
Network domains are represented as regular cubic networks of finite dimensions made of crosslinked multiseg-
mental Gaussian chains. The domains differ from one another in the number of network cells. For averaging
over al network domains, an exponential distribution function of the number of polymer segmentsin domains
is used, which was earlier proposed by one of the authors within the framework of the aggregate model. The
time dependence of the relaxation modulus of the polymer network with domain-type heterogeneity was shown
to follow a stretched exponent law. In contrast, the theory predicts a power-law dependence of the relaxation
modulus for infinite regular polymer networks. This conclusion can be extended to other exponential functions
for the distribution of segments in network domains; i.e., to a rather wide range of heterogeneous network

systems.

INTRODUCTION

Crosslinked polymer systems possessing rubber
elasticity (elastomers) have been a subject of intense
research for many decades because of their wide prac-
tica application. While the statistical properties of
crosslinked polymers have been studied fairly well, the
understanding of the dynamic properties of crosslinked
polymer systems remains far from being complete as
compared to those of polymer solutions or melts. This
is primarily due to the complex nature of physical phe-
nomena occurring in polymeric systems and a large
number of factors that determine the dynamic proper-
ties of crosslinked polymer systems. One of such fac-
torsisthe structural heterogeneity of crosslinked poly-
mers (polymer networks). There is a wide variety of
possibletypes of polymer network heterogeneity. Asan
example, the length distribution of polymer chains con-
necting the crosslinks, the existence of regionswith dif-
ferent topology and crosslink density, or the presence
of uncrosslinked amorphous regions together with
crosslinked regions may be named.

Most of the theoretical approaches that were devel-
oped to describe the dynamics (and, especidly, the
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aspects of dynamic behavior at long times) of polymer
networks are based on the use of idealized regular
(homogeneous) network models [1-18]. In these mod-
els, a polymer network is represented as a set of long
elastic chains with the ends crosslinked at the network
junctions. In this case, it is assumed that all network
chains have the same contour length and form aregular
three-dimensional structure of different topology. The
use of such regular network models is the simplest
approach to rationalizing the dynamics of crosslinked
systems and it allows the effect of crosslinking of mac-
romolecules to a united structure on the viscoelastic
properties of polymers to be qualitatively analyzed.
However, the predictions of the theory are often diffi-
cult to compare with the experiment in this case
because the structural heterogeneity inherent in
crosslinked polymer systems can significantly interfere
with the effects due to linkage of macromolecules in
the three-dimensional network structure. Thus, allow-
ance for the heterogeneity of polymer networks is an
important problem in the theoretical description of the
dynamic properties of polymer networks. In thiswork,
we will consider arather general type of heterogeneity
associated with the existence of regions with different
propertiesin areal crosslinked polymer.

DYNAMIC MODEL

Since the crosslinking process of polymer chain has
a random character, a real network polymer can have
both crosslinked and uncrosslinked regions. For exam-
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RELAXATION MODULUS OF HETEROGENEOUS POLYMER NETWORKS

ple, crosslinked regions of different sizes may be sepa-
rated with “soft” regions composed of uncrosslinked
macromolecules. The simplest approach to the descrip-
tion of a crosslinked polymer system of this sort con-
sists in treating the relaxation of different crosslinked
network regions independently of one another. There-
fore, the following dynamic model of a heterogeneous
network is proposed. The polymer network is repre-
sented as an assembly of crosslinked regions (domains)
of different sizes which relax independently of each
other (Fig. 1). It isassumed that each domain is aregu-
lar cubic network composed of N x N x N cells. The
polymer chains that connect contiguous junctions are
modeled by the Kargin—Slonimskii—Rouse multiseg-
mental chains [19, 20] comprising n, segments. The
value of n, is assumed to be equa for al network
domains of the system; thus, the domains differ from
one another only in the number of cubic cellsinside a
domain. Such homogeneity of the inner network struc-
ture of domains makes it possible to use (after some
transform) the results obtained in the theories of
dynamic properties of regular polymer networks.

It is assumed that all cubic domains of the network
have “soft” boundaries (the boundary junctions are not
fixed in space) and the domains move against the back-
ground of a “common” effective viscous medium.
What is examined is the viscoelastic behavior of the
heterogeneous polymer network under the action of an
external perturbing force which creates a longitudinal
velocity gradient in the effective viscous medium. In a
certain sense, the system under consideration resem-
bles a polymer solution in which the process of
crosslinking of macromolecules into a network takes
place. If the network formation process is not com-
pleted, rather large entities that have aready got the
inner network structure relax independently of one
another against the solvent. The velocity gradient of the
effective viscous medium is supposed to be identical
for al network domains; therefore, the viscoelastic
behavior of the heterogeneous polymer network as a
whole can be described with the set of generalized vis-
coelastic Maxwell elements [21] connected in series.
Then, thetotal dynamic modulus of the network system
of interest will be the sum of moduli of network
domains. In this case, the relative contribution of net-
work domainsto the total modulusis determined by the
size distribution of domains in the system. For averag-
ing over al heterogeneous-network domains, a distri-
bution function from the aggregate model, which was
earlier proposed by one of the authorsto rationalize the
relaxation of amorphous polymers [22-24], is used.
This distribution function is exponential. By the end of
the paper, we will consider a more general form of
function for the exponential behavior of the number of
segments in domains. If each network domain is char-
acterized by the number of Gaussian segments con-
tained in it, y, according the accepted model of hetero-
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Fig. 1. Dynamic model of heterogeneous polymer

network composed of crosslinked regions (domains)
of different size.

geneous network, the distribution function for the num-
ber of segmentsin domains n(y) is defined by [22—24]

n(y) = Cy’exp[-ay], (1)
where C isthe normalization constant. The parameter a
defines the average number y of chain segments in
domains: a [13/y. Note that the physical meaning and

the temperature dependence of a (or ) may be differ-
ent in systems with another character of heterogeneity.
For example, the parameter a in the aggregate model
[22—24] isdefined by U, /ks T, where U, is the energy of
the smallest domain.

The size of the smallest network domain in the con-
sidered system must be of the order of dimensions of
the cubic network cell. In addition, since we consider
the system in which each domain possesses the inner
network structure, an average domain must contain the
number of segments much larger than the number of
polymer segments in the cubic cell of the network.
Recall that the unit cell of the cubic network comprises
three multisegmental Gaussian chains and, correspond-
ingly, contains 3n, segments. Therefore, the condition

y > 3n, must be observed, which implies that the dis-

tribution parameter a 03/y must be much smaller than
unity for sufficiently long polymer chains. a < 1/n,.

THEORY

First, let us consider the dynamic viscoelastic
behavior of an individua polymer network domain rep-
resented by a regular cubic network of afinite size. In
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the studies of macroscopic viscoel astic properties of an
infinite cubic polymer network [18, 25, 26], it was
shown that small-scale intrachain and cooperative
interchain relaxation processes can be considered sep-
arately. The contribution of intrachain network motions
turns out to be close to the contribution that would be
made by uncrosslinked polymer chains of the same
molecular mass asin the network. Intrachain relaxation
processes of a larger scale were shown [18, 25, 26] to
be fairly well described in terms of the simplified
coarse-grained network model [4, 11, 14-18, 25, 26].
This coarse-grained dynamic network model represents
aset of junctions connected by elastic springsto form a
three-dimensional network structure. In the case, the
elasticity constant K of a spring connecting two neigh-
boring junctions corresponds to that of the multiseg-
mental Gaussian chain between these junctions, and the
friction coefficient ¢ of ajunction isthat of the friction
of the halves of multisegmental chains originating from
thisjunction. Thus, in order to find the dynamic modu-
lus of the polymer network composed of crosslinked
multisegmental Gaussian chains, it is sufficient (with
reasonable accuracy) to sum the moduli of the coarse-
grained polymer network model and uncrosslinked
polymer chains of the same molecular mass as in the
network [18, 25, 26].

For the relaxation modulus G(t; N) of a cubic net-
work domain composed of N2 cells, we get

1

G(t; N) = G+
( ) evdom

3kBTZ exp[—t/1,(0)]
? 2)

+

- 3N3K, TS expl-t/T()],
dom m

where V,,, is the volume of a cubic network domain
and G, is the equilibrium modulus of the polymer net-
work. The second term reflects the contribution of the
coarse-grained dynamic network model to the relax-
ation modulus (interchain relaxation processes). The
last term is the dynamic modulus of noncrosslinked
polymer chain of the same length as in the network
(intrachain relaxation processes).

Relaxation times 1,(0) for the coarse-grained net-
work model are asfollows[14, 17, 25, 26]:
6Tmin

T(6) = 3 - cos6, — cosB, — cosO;’

3)

where the minimum time for the relaxation of the
coarse-grained network model (at 8, =6,=06;=") is

Tin = 57 o

The relaxation times 1,(0) are determined by the three-
component interchain wave vector 8 = (6,, 6,, 6;)

GOTLIB et al.

which describes a phase shift between displacements of
neighboring cubic network cells:

LS
e1;2;3 = Nk1;2;31 k1;2;3 =1..,N-1 (5)
(N is the number of junctions along one of the three
orthogonal directionsin the cubic polymer network).

Relaxation times t() corresponding to the contri-
bution of intrachain relaxation to the modulusin Eg. (2)
are given by

21,
(L—cosy)’
Here, the minimum relaxation time of a network
domain is the relaxation time of the chain segment

W=m

o(Y) = (6)

_ S

o = 3Ky’
where K, is the spring constant of a Gaussian subchain
and ¢, isthefriction coefficient of an individual segment.
The intrachain wavenumber ) corresponds to the phase

shift between displacements of neighboring segmentsin
amultisegmental Gaussian chain [19, 20, 27, 28]:

kTt
Ng+1’

(7

P = k=1..n, (8)
(ny is the number of segments in a chain between net-

work junctions).

Since the domains have finite dimensions, each net-
work domain is characterized by its own finite maxi-
mum relaxation time

_ 4 2

Trax = _2N Trin

€))

which is proportional to the squared number of junc-
tions N in a cubic domain along one of the directionsin
the Cartesian coordinate system. Recall that relaxation
times of an infinite regular network have no finite limit
[1, 3, 14-18, 25, 26]. It should be also noted that the
minimum relaxation time T, given by Eq. (4) for the
simplified coarse-grain model of apolymer network is
close in value to the maximum relaxation time of the
chain connecting neighboring network junctions,
Tenain [ 18], which is defined as follows (see Eqg. (6) at
Y =T7(ny + 1))

4
Teran = —(No+ 1)°T,. (10)
TT

Further, we will deal only with one of these two quan-
tities, namely, the relaxation time T, -

Inasmuch as we are going to use distribution (1) of
the number of segments y in domains to average the
relaxation modulus over all domains of the heteroge-
neous polymer network, it is necessary to represent the
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dynamic characteristics of each domain as a function
of y. The cubic network domain including y chain seg-
ments is composed of N3 network cells, each contain-
ing three multisegmental Gaussian chains (or 3n, Gaus-
sian segments). Hence, the following simple relation-
ship is observed for domains of these sort:

y = 3n,N°. (11)

Using relationship (11), we may rewrite Eq. (2) for the
relaxation modulus of an individual cubic domain of
the heterogeneous polymer network in the following
form:

G(t; y) -G (12)

1 1
=34k Tho| =) exp[—t/t,] + =N exp[-t/t ]|,
hainKB o{yg p[ ] no% pl ]}

wherev .., isthe number of network chainsin unit vol-
ume and the relaxation times 1, and 1. are as defined by
Egs. (3) and (6). Relaxation times that are manifested
in the mechanical relaxation of an individual domain of
afinite size fall in the interval between the relaxation
time of a Gaussian segment 1, (Eq. (7)) and the maxi-
mum relaxation time of adomain t,,,,,(y) which may be
represented in the following form using Eq. (11):

Trax(Y) = (13)

L
2|33n TchainY
Using Eqg. (12) for the relaxation modulus G(t; y) of the
individual domain, it is easy to represent its asymptotic
time behavior within different characteristic timeinter-
vals.

In the short-time region 1, < t < Ty, the domain
relaxation modulus G(t; y) behaves as follows:

16 [Terein
G(t; y) =G, OvksT n/ =,

wherev = NV, iSthe number of segmentsin unit vol-
ume. Such “power-law” behavior of the relaxation
modulus is characteristic of individual uncrosslinked
Gaussian chains[20, 21, 28]. Thisregion of the asymp-
totic time behavior of the relaxation modulus as defined
by (14) extends up to the time periods of the order of
the relaxation time of chains connecting neighboring
junctions, Tgn, @ given by Eg. (10). In this case, the
decay of the relaxation modulus at t [T, With respect
to the magnitude of the modulus at the initial point of
time is inversely proportional to the number of seg-
ments n, in a chain between junctions: (G(Tyn) —
Ge)/(G(0) - Ge) ~ 1/ng.

At timeslonger than the relaxation time of the chain
between junctions T, but shorter than the maximum
domain relaxation time T,,,,,(Y), the time dependence for
the relaxation modulus of a cubic network domain is
the same as that for the modulus of the infinite regular

(14)
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cubic network in the region of predominant large-scale
interchain relaxation [1, 3, 14-18]

1 4«/§|j-cha|n|:|

G(t; ¥) - Ge OVke T il (15)

In this region, the relaxation modulus also decays fol-
lowing a power law; moreover, the decay is faster than
in the region of predominant intrachain relaxation (14).
At longer times (t > 1,,,.(Y)), thefinite size of adomain
begins to have an effect, and we obtain the following
asymptotic behavior of the relaxation modulus:

G(t' y) _Ge
Ouk T9HJ§1[Imax(y)%eX [

(16)
max(y)}

The relaxation modul us of the cubic network domain of
afinite size starts to decay by an exponential law since
the set of relaxation times for an individual domain is
limited by the maximum relaxation time 1, (y) of the
domain as awhole. Thisis the major difference in the
viscoelastic properties of infinite and finite regular
polymer networks (Fig. 2). At the points of time when
the exponential decay of the relaxation modulus of a
network domain of afinite size becomes noticeable (t [
T...x(Y)), the following estimate can be obtained for the
relative decrease in the relaxation modulus: (G(T,,,,,) —
Go)/(G(0) — G.) ~ (1/ny)(1/N?), where N3 is the tota
number of cubic cellsin anetwork domain.

Now, let us consider the viscoelastic dynamic prop-
erties of the heterogeneous polymer network as a
whole. As noted above, in order to find the relaxation
modulus of the network, it is necessary to average the
modulus of its individua domain over all network
domains using corresponding distribution function (1).
Because the network heterogeneity type discussed in
this work begins to manifest itself on a scale greater
than the network cell size, the relaxation modulus G(t)
of the polymer network as a whole within time periods
shorter that the relaxation time of the chain between
junctions Ty, Will behave in the same manner as the
modulus of the individual domain (Eqg. (14)). At longer
times (t > T4.4n), the main contribution to the relaxation
modulus G(t) of the heterogeneous polymer network is
made by the time regions corresponding the exponen-
tial decay of moduli of individual domains (Eqg. (16)).
In order to get the asymptotic time behavior of the
relaxation modulus of the network at longer periods, it
isnecessary to usethe Laplacetransform [29] for deter-
mining the asymptotic behavior of an integral with a
large dimensionless parameter (t/Tgmn) = 1. Ulti-
mately, we abtain the following expression for the
relaxation modulus G(t) of the heterogeneous polymer
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Fig. 2. Time dependence for the relaxation modulus
G(t) of three network systems: (1) infinite regular

cubic network: G(t) ~ t™12 at t < T, (region a) and
G(t) ~t3 at t > 1, (regionsb and ¢); (2) cubic net-
work domain containing the average number of poly-
mer segments: G(t) ~ t™12 at t < Tg,,;, (region a),
G(t) ~ t7372 at 14,;, <t < 14 (region b), and G(t) ~
exp[-t/14] a t > 14 (region c¢); and (3) heterogeneous
polymer network with the domain structure: G(t) ~
t712 at t < 1, (region a) and G(t) ~ exp[—t/1%)3°]
att > 14, (regions b and c). The curves were con-
structed with the parameters ny = 20 and a = 0.001.

network with the domain structure in the region of suf-
ficiently long times (t > Tyin):

(G(t)-Go)
_ t 10 t /5. (17)
DvdokaTcl(ano)”samE exp[—a—*%s |

where C, = 2795 x 5712 x 32910 x 12119 gnd V4, = V/Y
isthe number of domains of the average sizein unit vol-
ume (recall that v isthe number of segmentsin unit vol-
ume). The characteristic relaxation time T* is close in
the order of magnitude to the maximum relaxation time
T4 Of anetwork domain containing the average number

of segments y
™ = Gy, (18)

where C, = 553223318 = (.15 and 14 is given by (see

GOTLIB et al.

Eqg. (13) aty=y 3/a)

_ 4l ?

W= S (19)

Tchain .

Note that the region in which the relaxation modulus
would decay ast=3/2, which correspondsto the region of
pure interchain relaxation of an individua network
domain as given by (15), isnot displayed in the hetero-
geneous network system under consideration. This is
due to the fact that the averaging over al domains is
performed starting from the smallest domain which
actually does not possess the inner network structure
sinceitssizeisequal to the dimensions of the cubic net-
work unit cell.

From Eq. (17), we can see that the relaxation mod-
ulus of the heterogeneous polymer network at suffi-
ciently long times exhibits stretched-exponential
behavior: exp[—(t/1*)*’]. The stretched-exponential
time behavior of the network relaxation modulusis due
to exponential form (1) of the number distribution func-
tion n(y) of segments in domains, which was used to
average the modulus over all the domains of the system.
The powered term (t/1,,,,,)¥'° in Eq. (17) affects very
insignificantly the form of function G(t) ascompared to
the stretched-exponential factor, and it appears because
of the presence of the squared factor y? in the applied
distribution function (1). At times corresponding to the
onset of the stretched-exponential behavior (t O1,), the
decay of the relaxation modulus with respect to its
value at the initial point of time is given by (G(ty) —
G)/(G(0) — G,) = 0.14 - a. It is obvious that, at these
times, the relaxation modulus of the heterogeneous
polymer network having sufficiently long chains
(n, > 1) decreases rather strongly now (recall that the
conditions a < 1/n, should be fulfilled in the system
under consideration).

Thus, if a heterogeneous polymer network is com-
posed of domains having a homogeneous network
structure and there is a size distribution of domains in
the system, the decay of the relaxation modulus at
longer times corresponding to interchain relaxation
occurs much faster than in homogeneous polymer net-
works (i.e., when the domain size tendsto infinity). The
power-law dependence of the relaxation modulus
G(t) ~t3” of aregular three-dimensional network in the
region of interchain relaxation isreplaced by stretched-
exponential behavior (17) of the time dependence of
the modulus in the case of the heterogeneous polymer
network with the domain structure (Fig. 2). If there
were no size distribution of domains (all domains had
identica finite dimensions), the decay of the relaxation
modulus would be exponential, i.e., even faster than in
the considered heterogeneous network system.

It is especially important to note that complex poly-
mer systems frequently exhibit the stretched-exponen-
tial relaxation behavior. As examples, local segmental
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motions in noncrystalline polymers, motions of macro-
molecules in strongly entangled polymer melts, and
relaxation phenomenain other strongly correlated sys-
tems can be mentioned [30]. In such systems, strong
correlations between relaxing units lead to the delay of
relaxation with respect to the ordinary exponentia
decay for systems with one relaxation time and to the
appearance of the stretched-exponential time behavior.
Another exampleisdielectric relaxation in glassy poly-
mers, which may be described in terms of the imperfec-
tion diffuson modd [31, 32]. And, finaly, the
stretched-exponential  relaxation behavior is aso
observed in disordered orientation glasses. In the latter
case, it ismainly due to the inhomogeneity of asystem,
i.e., caused by the same factor asin the case of the het-
erogeneous polymer network with the domain structure
considered in the present work. It is essential that all of
the above examples deal with local relaxation processes
having a sufficiently short characteristic time. In con-
trast, the dynamic model of the heterogeneous polymer
network considered in this paper describes the large-
scale intrinsic interchain network relaxation with char-
acteristic times longer than the maximum relaxation
time of a polymer chain between network crosslinks.

The strong difference in the behavior of the relax-
ation modulus in the long-time region for inhomoge-
neous and homogeneous polymer networks is aso
reflected by the relaxation spectrum. Recall that the
relaxation spectrum H(t) (or relaxation time distribu-
tion function) is related to the relaxation modulus G(t)
by [21]

G(t) = Ge+IH(r)exp[—t/T]dInI, (20)
where G, is the equilibrium modulus of a polymer net-
work. The relaxation spectrum H(T) isavery important
characteristic as it uniquely determines al viscoelastic
properties of a system [21]. Inasmuch as the heteroge-
neity of the type under consideration begins to have an
effect on a scale greater than the network cell size, the
network relaxation spectrum H(T) at short times T <
T.nain dOes not differ in the least from the spectrum of an
individual multisegmental Gaussian chain

13 [Tonain
H(T1) DVKBTnon T

In the long-time region (T > 1., ahd T > 1), avery
strong decay of the relaxation spectrum takes place:

1)

H(T) OVeemK s T(an) CH : _ g/zexp[—B(T/Td)slz] ,(22)

where C = 26571392, Veom 1S the number of domains
of the average size in unit volume, and T, is the maxi-
mum relaxation time of a network domain of the aver-
age size as defined by Eq. (19). Thus, the relaxation
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time spectrum H(t) for the heterogeneous polymer net-
work in the region of large-scale interchain (interdo-
main) relaxation turns out to be extremely narrow. In
thisrespect, it strongly differsfrom the relaxation spec-
trum of the regular three-dimensional network, which
is characterized by the power-law behavior 172 in the
interchain relaxation region [1, 3, 14, 17, 18].

L et us emphasi ze once more that the main reason for
the appearance of the stretched-exponential time
behavior of the relaxation modulus of an inhomoge-
neous polymer network consists in the exponential
form of the number distribution n(y) of segmentsin net-
work domains (Eg. (1)). In addition to the aggregate-
model distribution function [22—-24] used in this work,
there are many other examples of exponentia distribu-
tion. For example, the stretched-exponential time
behavior of the relaxation modulus may appear as a
result of the existence of abroad molecular mass distri-
bution of network chains, which also obeys the expo-
nential law exp[-n/n], where n isthe average number
of segments in chains between the crosslinks [34].
Another example is a network system with the micro-
domain structure in which the number of crosslinks
inside a domain fluctuates about the mean value from
one domain to another because of the randomness of
chain crosslinking and, hence, is determined by the
Gaussian distribution function exp[—(y — YDP/2[3y?[.
This distribution function has the form exp[-ay?] at a
large number of segments in domains. The physical
nature of such structurally inhomogeneous systems is
different from the aggregate structure proposed previ-
ously [22-24].

Therefore, it is very interesting to extend the results
obtained in this work using distribution function (1)
developed for the aggregate model to the case of expo-
nential distribution of the general type. Let the number
distribution n(y) of polymer segments in domains be
defined as

f(y) Oy’ exp[-ay’] . (23)
where a is the distribution parameter, and o and d > 0
are the power indexes that may take arbitrary values.
The parameter a determines the average number of

polymer segments ¥ inadomain: a [ 1/376 . After aver-
aging with distribution function (23) over al domains,
which are assumed to be regular cubic networks of a
finite size as previously, the relaxation modulus of the
heterogeneous polymer network at sufficiently long
times (t > 1,,,,,) Will be given by

G(t) _Ge
a-(32)3 5
P 24)
Ot @ Ot 7@ (
DVKBTE[chainD exp| -0 ,
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where T* isacertain characteristic time of thepolymer 11 Graessley, W.W., Macromolecules, 1980, vol. 13, p. 372.
network having a domain-type heterogeneity. Thus, 12. Kloczkowski, A., Mark, J.E., and Frisch, H.L., Macro-
even rather weak exponential dependence of the distri- molecules, 1990, vol. 23, no. 14, p. 3481.

bution function A (y) (at &> 0in Eq. (23)) resultsinthe 13 Soltgg’l YuYa, Pure. Appl. Chem, 1981, vol. 53,
stretched-exponential behavior of the time depen- S .
dence of the relaxation modulus G(t) (the power index 1% %’ézb' \I(ui?gd G§)5I8vachev, G., J. Non-Cryst. Solids,
0/(d + 2/3)) in the exponent of Eq. (24) is always less n VOl 112, P. 69U, .
than unity at & > 0). For the distribution given by the 15 Gotlib, Yu.Ya and Gurtovenko, A.A., Polymer Science,
aggr@ate model (O. =2andd= 1’ see Eq (l)), expres- Ser. A, 1996, vol. 38, no. 4, p. 360.

sion (24) of the general type transforms into relation- 16. Gotlib, Yu.Ya. and Gurtovenko, A.A., Macromol. Theory
ship (17). For example, another stretched-exponential Smul., 1996, vol. 5, p. 969.

behavior of the network relaxation modulusis obtained 17. G_Otllb, Yu.Ya and Gurtovenko, AA, Macromol. Theory
for the Gaussian distribution function (o = 2): Simul., 1997, vol. 6, p. 523.

exp[-(U/T* )08] (cf.. Eq. (17)?. In ad@non, averagingina 18. %Qrg,)\\l/eoqufhﬁ.' f?dp_egggf Yu.Ya., Macromolecules,
similar manner with the dlstrl_butlon function n(y), it 19 Kargin, V.A. and Slonimskii, G.L., Dokl. Akad. Nauk
may be shown that the relaxation spectrum H(1) of the SSSR, 1948, vol. 62, no. 1, p. 239.

heterogeneous polymer network in the large-scale  5g Rouse PE., J. Chem. Phys, 1953, vol. 21, p. 1272,
interchain relaxation region exhibits the following 21. Ferry, J., Viscoelastic Properties of Polymers, New York:

behavior:

2(0—-5) /2
H(T)kaBTa:'g/ exp[—%l*gzj. (25)

We can see that, at a sufficiently long time, the relax-
ation spectrum of a polymer network having the domain
inhomogeneity becomes narrow with the arbitrary expo-
nential distribution n (y) of the number of polymer seg-
ments in domains as well. Thus, the principal results of
the present work can be generalized to the case of adis-
tribution function of rather common type (23).
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