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1. Intr oduction
In Part1 of this series[1] we haveobtaineda setof relaxa-
tion timesandthe transformation from Cartesiancoordi-
natesof network elements to normal modesfor a two-
dimensional polymer network consistingof multisegmen-
tal Gaussian chains and for a simplified coarse-grained
network modeldescribing only the large-scale collective
relaxation of a network.In this papertheexactanalytical
expressions for variouslocal dynamiccharacteristics of a
two-dimensional polymer network will be calculated
usingthenormal modetransformationobtained.

Thepaperis organizedasfollows. For thepolymernet-
work consisting of multisegmental Gaussianchains, the
mean-squaredisplacements of junctions, and non-junc-
tion beadsof network chains, the autocorrelation func-
tions of the end-to-end chain vectorsbetweenneighbor-
ing junctions,andthoseof subchainvectors will be con-
sidered.Theselocal dynamic characteristicsof the poly-
mernetworkhaving a two-dimensional connectivity were
not studiedpreviously. For all dynamic characteristics of

a squarenetwork the comparisonof the contributionsof
small-scale intrachain andcollectiveinterchainrelaxation
processesis made. The long-time relaxationpropertiesof
networkjunctionswil l becompared with analogousprop-
ertiesof junctionsof a simplified coarse-grained model
of a two-dimensionalnetwork, which may also be ana-
lyzed using normal mode transformation obtained in
Part1 of this series.[1] A comparison between local
dynamicpropertiesof two- and three-dimensional poly-
mer networks will be made. Moreover, the relaxation
propertiesof a square polymer network and a single
Rousechainwill bealsocomparedanddiscussed.

2. A two-dimensionalpolymer network
consistingof multisegmentalGaussian
chains

2.1. Relaxationpropertiesof networkjunctions

Now weshallconsiderthelocaldynamiccharacteristicsof
junctionsof a two-dimensional polymernetwork consist-
ing of multisegmental Gaussianchains. The mean-square

Full Paper: Using normalmodetransformationobtained
in Part 1 of this series1), the exactanalyticalexpressions
for the mean-squaredisplacementsof junctionsandnon-
junction beads,the autocorrelationfunctionsof the end-
to-endchain vectorsbetweenneighboringjunctions,and
thoseof subchainvectorsof a two-dimensionalregular
networkconsistingof “beadandspring“ Rousechainsare
obtained.Contributionsof intra- andinterchainrelaxation
processesto the local dynamiccharacteristicsconsidered
are compared.The time behaviorof dynamic quantities
obtainedis estimatedfor differentscalesof motions.The

possibility of describinglong-time relaxation of a two-
dimensionalnetwork by a simplified coarse-grainednet-
work model is demonstrated.It is shown that the local
relaxationpropertiesof a two-dimensionalpolymer net-
work (as well as a three-dimensionalnetwork) on scales
smallerthanthe averagedistancebetweencross-linksare
very close to thoseof a single Rousechain. The large-
scalecollectiverelaxationof thepolymernetworkshaving
a two-dimensionalconnectivitydiffers considerablyfrom
thatof thethree-dimensionalnetworks.
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displacementsof network junctions and the autocorrela-
tion functions of the end-to-end chain vectors between
neighboring junctions wil l be studied. These dynamic
characteristicsmaybemanifested, for example, in dielec-
tric and mechanical relaxationof cross-linkedpolymers,
incoherent dynamicscattering,NMR phenomena,etc.

Themean-square displacementDX2�t� of theX projec-
tion of the positionvector of a network element is deter-
minedas

DX2�t�� p�X�t�ÿX�0��2P� 2�pX2PÿpX�0�X�t�P� �1�
wherep P meansthe configurational average.The mean-
squaredisplacementsdescribethe translational diffusion
of networkelements(junctionsandnon-junction beadsof
network chains).To calculate the quantity DX2(t) for a
junctionof a two-dimensionalnetwork consistingof mul-
tisegmental Gaussianchains,the normal mode transfor-
mation obtainedin Part 1 of this seriesshould be used
(see Eq. (22) in ref.[1]). Since the normal coordinates
obtainedin ref.[1] are independentand orthogonal, i. e.,
pQ�~h;w; 0�Q�~h 9;w9; t�P = 0 if ~h 6�~h 9 and(or) w 6� w9, the
mean-square displacement DX2(t) of a network junction
includes only the autocorrelation functions of normal
modespQ(0)Q(t)P. If w 6� 0 theseautocorrelation func-
tionshavethefollowing time behavior:

pQ�~h;w; 0�Q�~h;w; t�P � pQ2�~h;w; 0�P exp�ÿt=s�w�� �2�
In order to obtain the equilibrium values of squaresof

normal modes pQ2P, the law of equal distribution of
energy according to classical degreesof freedom for a
harmonicoscillator hasto be used.As a result,we have
for w 6� 0

pQ2�~h;w; 0�P � kBT
K02�1ÿ cosw� �3�

where K02(1 – cosw) are the eigenvalues of potential
energy of a two-dimensional network (see Eq. (18) in
ref.[1]). The normal modeQ with intrachain wave vector
w = 0 provides an additional contribution to DX2(t),
which corresponds to the displacement of the center of
massof a network.

The consecutive useof the normal mode transforma-
tion for calculating mean-square displacement of a net-
work junctionyields

DX2
0�t� � DX2

C�t� �
kBT
K0

1
N2�n� 1�

6
X
~h

X
w1 6�0

1ÿ exp�ÿt=s�w1��
2�1ÿ cosw� �4�

whereN2 is thetotal number of square cells in a network,
and n is the number of beads in the network chain
between neighboring junctions. The relaxation times
s(w), intra- and interchain wave vectorsw1 and~h are

given by Eq. (6), (12), and (7) of Part 1 of this series,[1]

respectively. The term DX2
C�t� in Eq. (4) represents the

square of displacement of the X projection of the center
of massof a two-dimensionalpolymernetwork,namely,

DX2
C�t� �

2kBT
&NET

t �5�

where&NET = 2 (n + 1)N2&0 is the total fricti on constantof
the two-dimensional network asa whole. We aremostly
interestedin the time dependenceof mean-squaredispla-
cement of a network junction to the exclusion of the tri-
vial displacement of centerof massof the network sys-
tem, i. e. the time behaviorof DX2

0�t� ÿ DX2
C�t� is of most

interest. Therefore, the term DX2
C�t� will be omitted

below, andthetime dependenceof mean-squaredisplace-
ment with respect to thecenterof massof a network will
be considered. The mean-squaredisplacement of a net-
work junction DX2(t) (seeEq. (4)) is determinedby the
wave vector w1 only (purely intrachain branchw2 is not
included in DX2(t) for the network junctions). It should
be emphasizedthat the quantity w1 dependson the phase
shift ~h betweennetwork cells in a rather complicated
manner (see Eq. (12) in ref.[1]). Therefore, the mean-
square displacementof a network junction is determined
by boththeintra- andinterchainrelaxationprocesses.

Using the exact expression for the mean-square dis-
placementof a junction of a two-dimensional regularnet-
work, one can study the asymptotic time behavior of
dynamicquantityDX2(t) andcomparethecontributionsof
intra-andinterchainmotionsto mean-squaredisplacement
of a junction. To obtaintheasymptoticbehavior of DX2(t)
aswell asother dynamiccharacteristicsof a network, the
following approximationwill beused.Thewavevectorw1

(seeEq. (12) in ref.[1]) at l = 0 is equalto thequantitywnet

(Eq. (14) in ref.[1]) and determines the interchain large-
scalemotionsonly. Thenormalmodesat l 6� 0 correspond
to the contribution of intrachain motionsto mean-square
displacement of a network junction. In the caseof suffi-
ciently long Gaussianchainsbetweenjunctions, thephase
shift~h betweennetwork cellshasa slight influenceon the
relaxationtimess(w1) at l 6� 0. Therefore,onecanassume
in the first approximation that the wavevectorw1(l,~h) at
l 6� 0 doesnot dependon the phaseshift ~h betweenthe
motions of network cells. Thus, we have the following
approximation for wave vector w1 in the case of suffi-
ciently longpolymerchainsbetweencross-links

w1�l� 0��wnet�
1

n� 1
arccos

1
2
�cos h1 � cos h2� �6a�

w1�l 6� 0� � 2lp=�n� 1�; l � 1; :::; n=2 �6b�
Note that the set of wave vectors w1(l 6� 0) is doubly

degeneratedbecausetwo signsl correspondto eachvalue
of l in Eq. (12) in ref.[1]
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Thenthe mean-squaredisplacementof a junction with
respectto the center of mass(Eq. (4)) may be presented
in thefollowing approximateform:

DX2
0�t� X

kBT
K0

1
�n� 1�

1
N2

"X
~h

1ÿ exp�ÿt=s�wnet��
2�1ÿ coswnet�

� 2N2 N
X

w1�l 6�0�

1ÿ exp�ÿt=s�w1�l 6� 0���
2�1ÿ cosw1�l 6� 0��

#
�7�

The first term in bracketsof Eq. (7) correspondsto the
contribution of interchain long-scale motions to the
mean-squaredisplacement of a network junction. The
secondterm correspondsto the intrachaincontribution to
DX2

0�t�. The first term in Eq.(7) representsthe double
sum taken over componentsh1 and h2 of the interchain
wave vector. In order to simplify this term, the compo-
nentsof thewavevector~h canberegardedascontinuous
variablesin thecase of a network with a greatnumber of
junctions (N S 1), and the long wave approximation[2–5]

shouldbeused(h1;2 s p). In this casetherelaxation times
of interchaincollective motions snet = s(wnet) may be pre-
sentedas(seeEq. (6) and(14) in ref.[1]):

snet X 8�n� 1�2s0�1=h2� �8�

Here h2 = (h2)2 + (h1)2 is the square of the interchain
vector~h ands0 = &0 /4K0 is the relaxation time of a single
Gaussian subchain.Therelaxationtimessnet in long wave
approximation dependonly on the squareof the inter-
chainwave vector~h. Therefore,it is convenient to intro-
ducea polar coordinatesysteminto double integralsand
to integrateoveranangularvariable.

Using the aboveapproximations, a comparisonof the
contributionsof intra- andinterchain relaxationprocesses
to the mean-squaredisplacement of a junction can be
madefor different scalesof time. The initial slopeof the
time dependence of DX2

0�t� may be easily obtained
directly from rigorousexpression givenby Eq. (4). Treat-
ing Eq. (4) at t a s0 we have

DX2
0�t� X

kBT
K0

1
4

t
s0

�9�

Intrachain motions dominate in the initial slopeof the
mean-squaredisplacement of a junction (Fig. 1). The
contribution of intrachainmotionsis (n + 1) timesgreater
than that of interchain collective motions. At times
greater than s0 but much smaller than the maximum
relaxation time schain of a chainbetweenneighboring junc-
tions (seeEq. (16) in ref.[1]), the mean-square displace-
mentof a network junction behavesas:

DX2
0�t� X

kBT
K0

1
p

�������
t
s0

r
�10�

This time dependenceis typical for that of a beadof
long Gaussian chain.[6, 7] The intrachain motions also
dominatein this time range.At times close to schain the
interchaincollectivemotionsbeginto providethenotice-
able contribution and the time behavior of DX2

0�t�
changes

DX2
0�t� X

kBT
K0

1
p

�������
t
s0

r
� kBT

K0

p

8�n� 1�
t
s0

�11�

The first term in Eq.(11) corresponds to the contribu-
tion of intrachain motions(comparewith Eq. (10)). The
secondtermrepresentsthe initial slope of contribution of
interchaincollectivemotions (the timess0 a t a schain cor-
respondto the short time range for these large-scale
motions). The contributions of intra- and interchain
motions to the mean-square displacement of a network
junctionbecomeapproximatelyequalat t X schain (Fig. 1).
At timesgreater thanthe relaxationtime schain of a chain
betweenneighboringjunctions(t A schain) themean-square
displacementDX2

0�t� hasasymptotic behavior

DX2
0�t� X

kBT
K0

�n� 1�
2p

N ln
t

schain

� �
�12�

At t A schain the intrachain relaxation processesdo not
influence the time dependence of the mean-squaredis-
placementof a junction andgive only a constantcontri-
bution.The interchainnetworkmotionsprovidethemain
contribution at t A schain and completely determine the
time dependence of DX2

0�t�. The mean-squaredisplace-
mentof a junction of two-dimensional polymer networks

Fig. 1. Reducedmean-squaredisplacementof a network junc-
tion DX2

0�t�=ph2
xP (solid line). Lines with open circles (9) and

solid squares(f) correspondto the contributionsof inter- and
intrachainrelaxationprocesses,respectively. The quantity ph2

xP
is the mean squareof the end-to-end chain vector between
neighboringjunctions, in this casen = 20



Theoryof relaxationpropertiesof two-dimensionalpolymernetworks,2 419

increasesaccording to logarithmic law at long timesand
hasno finite limiting value in the caseof infinitely large
networks.

It shouldbe noted that for the squarenetwork of finite
size, which contains N2 network cells, the asymptotic
behavior given by Eq. (12) holds up to the maximum
relaxationtime of thenetwork asa wholesMAX l N2schain.
At timesgreaterthansMAX themean-squaredisplacement
of a squarenetwork reachesthe finite limiting value
determinedby thenetwork size

DX2
0�t�
��
tev X

kBT
K0

N
�n� 1�

p
N ln N �13�

whereN is the numberof network junctions along each
network direction. Note that Eq. (13) may be directly
obtainedfrom Eq. (12) at t = sMAX . Onecan seethat the
limiting valueof mean-squaredisplacementof a junction
dependson thenetworksizeaccording to logarithmic law
that is in agreement with resultsof RonkaandAllegra.[8]

Theyhaveshownthat themean-squareradiusof gyration
of the network increases logarithmically with total num-
berof chains for networks having a two-dimensionalcon-
nectivity.[8] The limiting value of quantity DX2

0�t� is
mostlydeterminedby contribution of interchainmotions,
which is proportional to lnN. In contrast, the intrachain
contribution doesnot dependon the size of the network
asa whole (Fig. 2). The interchain contribution Cinter to a
limiting valueof mean-squaredisplacementof a junction
of the squarenetworkhaving finit e size,is much greater
than the intrachain contribution Cintra, namely, Cinter/Cintra

L (12/p) ln(N/2). It should be especiallyemphasized that
all curves in figures are plotted using exact analytical
expressionsobtainedfor dynamiccharacteristics of a net-
work (seeEq. (4) in the case of mean-squaredisplace-
ment of a junction DX2

0�t�). Theabovementionedapprox-
imationsareusedonly to estimatethe asymptotic behav-
ior of dynamiccharacteristicsconsidered.

Besidesthe mean-squaredisplacement, the time auto-
correlation function of the end-to-end chain vector
betweenneighboring junctionsalso represents an impor-
tantdynamic quantitycharacterizingBrownianmotion of
a network.The projections of the end-to-end chain vec-
tors betweenneighboring junctions take the following
form (there aretwo end-to-endchainvectors percell of a
square network)

hx1�a; b; t� � X0�a; b; t� ÿ X0�aÿ 1; b; t� �14a�

hx2�a; b; t� � X0�a; b; t� ÿ X0�a; b ÿ 1; t� �14b�

As in the caseof mean-square displacement, with the
useof normalmodetransformation (Eq. (22) in ref.[1]) for
calculating time autocorrelation function C(hx; t) =
phx(0)hx(t)P we have

C�hx; t� � kBT
K0

1
4N2�n� 1�

X
~h

X
w1

exp�ÿt=s�w1��

6
2ÿ cos h1 ÿ cos h2

1ÿ cosw1

� �
�15�

With theuseof numerical calculations,theequilibrium
value of the meansquareof distancebetweenneighbor-
ing junctions ph2

xP = C(hx;0) averaged over all network
chainsmaybeapproximatelypresentedin theform

ph2
xP �

1
2N2

X
X

�ph2
x1�X; 0�P� ph2

x2�X; 0�P�

X
1
2

kBT
K0

�n� 1� �16�

At short times (t a s0) the autocorrelation function of
theend-to-endchainvector betweenneighboringnetwork
junctionsbehavesas

C�hx; t� X ph2
xPÿ

kBT
K0

1
4

t
s0

�17�

The time dependence of autocorrelation function
C(hx; t) = phx(t)hx(0)P at short times corresponding to the
initial slope is mostly determinedby intrachain motions.
However, the contribution of interchain collective spec-
trum to the total autocorrelation function C(hx; t) (time-
dependentpartandequilibrium valueof mean-square dis-
tance ph2

xP) at short times is approximately four times
greater than that of intrachain spectrum (Fig. 3). In the

Fig. 2. Reduced mean-square displacement of a junction
DX2

0�t�=ph2
xP of the squarenetworksof finite sizeswith N = 50

(solid line) andN = 25 (dottedline). Lines with opencircles(9)
andsolid circles(0) correspondto thecontributionsof interchain
motions for networks with N = 50 and N = 25, respectively.
Lines with solid squares(f) correspondto the contributionsof
intrachainmotionsfor both networksof different sizes,in this
casen = 20
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time rangefrom relaxationtime s0 of a Gaussiansubchain
to relaxation time of a network chain betweencross-links
schain (seeEq. (16) in ref.[1]) the quantity C(hx; t) behaves
as

C�hx; t� X ph2
xPÿ

kBT
K0

1
2p

�������
t
s0

r
�18�

The time dependence of C(hx; t) is still determined by
intrachain relaxationprocesses,whereasthe total contri-
bution of these motions to autocorrelation function
C(hx; t) is muchsmaller thanthat of interchain relaxation
processes (Fig. 3). At times greater than the relaxation
time of a network chain betweencross-links schain, the
quantity C(hx; t) behavesas:

C�hx; t� X kBT
K0

p

4
�n� 1� schain

t

� �
�19�

i. e., decreasesto zerowith time. The interchain motions
completely dominateat t A schain, andtheir contribution to
time dependenceof C(hx; t) is much greater than that of
intrachain relaxationprocesses(Fig. 3).

2.2. Relaxationpropertiesof non-junctionbeadsof
networkchains

In orderto obtain rigorousanalyticalexpressionsfor local
dynamic characteristicsof non-junction beadsof a two-
dimensional regularnetwork, the normal modetransfor-
mation (seeEq. (19) of Part1 of this series[1]) should be
used.For themean-squaredisplacementof a non-junction
beadweobtain thefollowing expression:

DX2�j; t� � DX2
C�t� �

kBT
K0

1
N2�n� 1�X

~h

X
w1 6�0

1ÿ exp�ÿt=s�w1��
2�1ÿ cosw1�

� kBT
K0

2
�n� 1�

X
w2

sin2 jw2

1ÿ exp�ÿt=s�w2��
2�1ÿ cosw2�

�20�

Here the relaxation times s(w), intrachainvectors w1

and w2, and interchain wave vector ~h are given by
Eq. (6), (12), (13), and (7) of Part 1 of this series,[1]

respectively. The quantity DX2
C�t� is the squareof dis-

placementof the X projection of the center of massof a
network,which is given by Eq. (5). Note that the mean-
squaredisplacement of a non-junction bead(as well as
thedynamiccharacteristicsof network junctions(seepre-
vious sub-section)) doesnot dependon the two-compo-
nent index of a network cell X = (a,b) because all the
cells of a squarenetwork with periodic boundary condi-
tionsareequivalent. Moreover, thequantityDX2(j; t) does
not depend on the position of Gaussian chainsin a net-
work cell (indexp = 1;2) either, becauseof thesymmetry
of a regular squarenetwork.

One can seefrom Eq. (20) that the mean-squaredis-
placementof a non-junction bead dependon the bead
positionj along thenetwork chain(j = 1,...,n). At first, we
considerthe mean-squaredisplacement DX2(t) of a non-
junction bead, which is averagedover bead positions
alongthemultisegmentalchain

DX2�t� 3 pDX2�j; t�Pj � 1
n

Xn

j�1

DX2�j; t� �21�

AveragingEq. (20) overbeadpositions,we obtain

DX2�j; t� � DX2
C�t� �

kBT
K0

1
N2�n� 1�

6
X
~h

X
w1 6�0

1ÿ exp�ÿt=s�w1��
2�1ÿ cosw1�

� kBT
K0

1
�n� 1�

X
w2

1ÿ exp�ÿt=s�w2��
2�1ÿ cosw2�

�22�

In contrastto network junctions (Eq. (4)), the mean-
squaredisplacement of a non-junction beadof a network
chain is determinedby wavevectors w1 andw2. In addi-
tion to the main branch describedby wave vector w1

(Eq. (12) in ref.[1]), the purely intrachain branch w2

(Eq. (13) in ref.[1]) corresponding to relaxation of a net-
work chainwith fixed ends appears.Therefore,the rela-
tive contribution of intrachain motions to the quantity
DX2(t) increases as compared to that of a network junc-
tion.

Theapproximateestimation of time dependencewhich
wasappliedin the considerationof dynamic characteris-

Fig. 3. Normalized autocorrelation function C0(hx; t) of the
end-to-endchain vector betweenneighboringjunctions (solid
line). Lines with open circles (9) and solid squares (f) corre-
spondto thecontributionsof inter- andintrachainrelaxationpro-
cesses,respectively. Thequantityn is equalto 20
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tics of network junctions(seeprevioussub-section) may
alsobeusedto analyzethemean-square displacementsof
non-junction beads.As in thecase of a network junction,
we shall study the time dependence of mean-squaredis-
placement of a non-junction beadDX2(t) with respect to
centerof massof a two-dimensional network.The initial
slope(t a s0) of DX2(t) averaged over the beadposition
alongthenetwork chainis givenby:

DX2�t� X kBT
K0

1
2

t
s0

�23�

It is two timesgreaterthanthat for a network junction
(Eq. (9)). The contribution of intrachainrelaxation pro-
cessesdominates in the initial slope (Fig. 4) and is
2(n + 1) times greater than that of interchaincollective
motions. In thetime rangefrom s0 to relaxationtime schain

of a network chain between junctions, the intrachain
relaxation processesprovide the main contribution
(Fig. 4), andthequantity DX2(t) behavesas

DX2�t� X kBT
K0

2
p

�������
t
s0

r
�24�

The mean-squaredisplacement of a non-junction bead
in this time rangeis alsotwo timesgreaterthanthat of a
networkjunction(Eq. (10)).Note thatsucha typeof time
dependenceis typical of themean-square displacementof
a bead of a single Gaussianchain.[6, 7] At long times
(t A schain) the mean-squaredisplacementDX2(t) averaged
over beadpositions along the network chainhasthe fol-
lowing asymptotic behavior

DX2�t� X kBT
K0

�n� 1�
2p

N ln
t

schain

� �
�25�

The time dependence of DX2(t) in this time rangeis
completely determinedby interchain motions, the intra-
chain motions provide only the constant contribution to
mean-square displacement at t A schain. The contributions
of intra- and interchain relaxation processes become
equal at t X 5schain (Fig. 5). Thus,in the sameway asdis-
placementof a junction,themean-squaredisplacementof
a non-junction beadof a two-dimensional polymer net-
work increasesinfinitely accordingto logarithmic law in
thecaseof infini tely largenetwork systems. For the two-
dimensional network of finite size such a type of time
behavior holdsup to maximumrelaxation time of thenet-
work as a whole sMAX l N2schain. At greater times the
quantity DX2(t) reaches the finite limit ing value deter-
mined by Eq. (13). The interchain contribution Cinter to
limit ing valueof DX2(t) in thecaseof thesquarenetwork
of finite sizeis much greaterthanintrachaincontribution
Cintra, which doesnot dependon the sizeof network asa
whole: Cinter/Cintra L (4/p) ln(N/2) (compare with analo-
gousexpression for network junction).

As mentionedabove,the mean-square displacement of
a non-junction beaddependson the beadposition along
the network chain. This dependenceis completely deter-
mined by the purely intrachainbranchw2 (third term in
Eq. (20)). It canbe shownthat the abovedependenceon
the beadposition j is manifested only at sufficiently long
times t A schain. For the asymptotic behavior of mean-
square displacement of a non-junction beadDX2(j; t) we
obtain (cf. Eq. (25)):

DX2�t� X kBT
K0

j 1ÿ j
n� 1

� �
� �n� 1�

2p
ln

t
schain

� �� �
�26�

Fig. 4. Thetime dependenceof reducedmean-squaredisplace-
ment of a non-junction bead DX2(t)/pu2

xP up to time t X schain

(solid line). Lineswith opencircles(9) andsolid squares (f) cor-
respondto the contributionsof inter- and intrachainrelaxation
processes,respectively. The quantitypu2

xP is the meansquareof
asubchain vector. In this casen = 20

Fig. 5. Thetime dependenceof reducedmean-squaredisplace-
ment of a non-junction beadDX2(t)/pu2

xP up to time t X 30schain.
Thedenotationof curvesis thesameasin Fig. 4
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One can see that the beadposition j hasinfluenceon
the limiti ng value of the intrachain contribution only, the
time dependencies of averagedand non-averaged mean-
squaredisplacements of non-junction beadsat t A schain

are identical (seeEq. (25) and(26)). In Fig. 6 the mean-
squaredisplacements of non-junction beadsare plotted
for differentbeadsof a network chain(j = 1,...,n) for the
casen = 20. The beadin the middle of a network chain
(j = 10) “feels” the restrictions related to the inclusion
into thenetworkstructureleastof all. In contrast,thenet-
work junction (j = 0) has the lowest diffusive mobility.
Thediffusivemobility of intermediate non-junctionbeads
increasewith distancefrom thenetwork junction (Fig. 6).

Now we consideranother dynamic quantity describing
local relaxationof non-junction beads– thetime autocor-
relation function of the end-to-endchainvector between
neighboring non-junction beads(subchain vector). TheX
projection of a subchain vector ux is determinedas:

ux�X; j; t� � X�X; j; t� ÿ X�X; j ÿ 1; t� �27�
With the useof normal mode transformation for non-

junction beads (Eq. (19) in ref.[1]), for the autocorrelation
functionC(ux; t) = pux(0)ux(t)P we obtain:

C�ux�j�; t� � kBT
K0

1
2N2�n� 1�

X
~h

X
w1

exp�ÿt=s�w1��

� kBT
K0

1
�n� 1�

X
w2

cos2 j ÿ 1
2

� �
w2

6 exp�ÿt=s�w2�� �28�
Using Eq. (28), the equilibrium value of the mean

squareof a subchain vector pu2
xP averaged over all sub-

chainsof a two-dimensionalnetwork maybecalculated

pu2
xP �

1
N2

1
2�n� 1�

X
a;b

Xn�1

j�1

�pu2
1x�j; 0�P� pu2

2x�j; 0�P�

� kBT
K0

1ÿ 1
2�n� 1�

� �
�29�

It shouldbe noted that in the limiting case n = 0 the
quantitypu2

xP corresponds to theequilibrium valueph2
xPCG

for a simplified coarse-grained network model and is
equalto kBT/2K (seebelow Section3). In contrast, in the
limiting casen e v corresponding to a singleGaussian
chain, the mean squareof the subchain vector pu2

xP is
equal to kBT/K0, i. e. to the analogousequilibrium quan-
tity of a linearGaussianchain.[6, 7,9]

Eq. (28) indicatesthat theautocorrelation functionof a
subchainvector C(ux(j); t) dependson the position of a
subchain along the multisegmental Gaussian chain
betweennetwork junctions (j = 1,...,n+1). In the same
way as for mean-square displacementof a non-junction
bead,it is convenient at first to considerthe autocorrela-
tion function C(ux; t) averaged over subchainpositions
alongthenetwork chain:

C�ux; t� � 1
n� 1

Xn�1

j�1

C�ux�j; t�; t� �30�

After averagingwe obtain

C�ux; t� � kBT
K0

1
2�n� 1�

"
1

N2

X
~h

X
w1

exp�ÿt=s�w1��

�
X
w2

exp�ÿt=s�w2��
#

�31�

The autocorrelation function C(ux; t) averagedover the
subchainposition along the network chain behavesat
shorttimes(t a s0) as:

C�ux; t� X pu2
xPÿ

kBT
K0

1
2

t
s0

�32�

Eq. (32) corresponds to the expansion in a series of
exp(–t/s) at short times t a s0 (see Eq. (31)). At times
from s0 to schain this initial slopeis replacedwith a power-
law behavior typical of a singleRousechain[6, 7,9]

C�ux; t� X kBT
K0

2
p

�������
s0

t

r
�33�

The intrachain relaxationprocesses provide the main
contribution to the time dependenceof autocorrelation
function C(ux; t) up to t L schain (Fig. 7). In the time range
s0 s t s schain the contribution of interchain collective
motionsis about (n + 1) timessmaller thanthat of intra-
chainmotions. Theinterchaincollective motionsbegin to
be manifested at times greater than the relaxation time

Fig. 6. Reduced mean-squaredisplacementsDX2(j;t )/pu2
xP of

differentnon-junctionbeadsof a networkchain(n = 20). Curves
j = 10 and j = 0 correspondto the middle bead of a network
chainandthejunction,respectively
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schain of networkchainsasa whole,andC(ux; t) decreases
morerapidly

C�ux; t� X kBT
K0

p

4
1

�n� 1�
schain

t

� �
�34�

Note that the autocorrelation function C(ux; t) at
t A schain decreasesconsiderablywith respectto theequili-
brium value C(ux; t) = pu2

xP (at t X schain it becomesabout
(n + 1) timessmaller thanpu2

xP). Therefore, the influence
of interchain relaxationprocesseson the quantityC(ux; t)
is negligiblein thetime rangefrom s0 to schain (Fig. 7).

It is interestingto studythedependenceof theautocor-
relation function of subchainvectors C(ux(j); t) on the
position of a subchain j along the multisegmentalchain
between network junctions. Eq. (28) shows that this
dependence is governedby the termdeterminedby intra-
chain wave vectorw2. This means that the autocorrela-
tion function of a subchainvector will besensitive to the
subchainposition along the chain in the regionof prefer-
ably intrachain relaxation,i. e. at times smaller than the
relaxationtime schain of network chainasawhole.At short
timescorrespondingto the initial slope(t a s0), the auto-
correlation function of subchains which are directly
attached to the network junctions (j = 1 and j = n + 1)
behavesas:

C�ux; t� X pu2
xPÿ

kBT
K0

3
8

t
s0

�35�

For other non-junction beads (j = 2,...,n) Eq. (32)
obtainedfor the autocorrelation function averagedover
beadpositions holds. Thus, even for the shortesttimes
t a s0 the autocorrelation function of a non-junction bead
is very sensitive to the fact that the given subchain con-

nects either the junction and non-junction bead(periph-
eralsubchainsof thenetwork chainbetweenjunctions) or
two non-junction beads(inner subchains).It is seenthat
the peripheral subchains relax more slowly ascompared
to the inner subchainsof a chainbetweennetwork junc-
tions(seeEq. (32) and(35),andFig. 8).

In the time rangefrom s0 to schain the autocorrelation
functionof a subchain vectorbehavesas

C�ux�j�; t� X kBT
K0

3
p

�������
s0

t

r
ÿ kBT

K0

2
3p
�2j ÿ 1�2 s0

t

� �3=2

�36a�

for subchainswith j = 1,...,n/2 and

C�ux�j�; t� X kBT
K0

3
p

�������
s0

t

r
ÿ kBT

K0

2
3p
�2nÿ2j�3�2 s0

t

� �3=2

�36b�

for subchains with j = (n/2) + 1,...,(n + 1). Note that
Eq. (36) arewritten for the case when n is an evennum-
ber. Eq. (36) indicatethat the dependence of the autocor-
relation function C(ux(j); t) on the subchain position j in
the time range s0 a t a schain is manifested in the next
time-dependent term of the expansionascompare to the
averaged quantity C(ux; t) (see Eq. (33)). In Fig. 9 the
autocorrelation functions of subchain vectors is plotted
for subchains having different positions j along the net-
work chain (j = 1,...,n + 1) for the casen = 20. The per-
ipheral subchains connecting the junction and non-junc-
tion bead(j = 1 and, due to symmetry, j = 21) show the
slowest relaxation. In contrast, the middle subchain

Fig. 7. Normalizedautocorrelationfunction C0(ux ; t) of a sub-
chain vector (solid line). Lines with opencircles (9) and solid
squares(f) correspondto the inter- andintrachaincontributions,
respectively. In this casen = 20

Fig. 8. Normalized autocorrelationfunctionsC0(ux(j); t) of dif-
ferent subchainvectors of a network chain (n = 20) at times
t a s0. Solid line correspondsto the peripheralsubchains(j = 1
and j = n + 1), andline with solid squares (f) correspondsto the
innersubchains(j = 2,...,n)
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(j = 11) relaxthemostrapidly. Therelaxation timesof the
inner subchain mediatesbetweenthe middle andperiph-
eralsubchains (Fig. 9).

Although we do not considerin this paperthe macro-
scopicviscoelasticcharacteristics(for example, dynamic
modulusandviscosity), some remarks concerning relaxa-
tion spectrum manifested in mechanical viscoelastic
relaxation of a two-dimensional polymer network canbe
made. TheautocorrelationfunctionC(ux; t) represents the
sum of exponential terms exp[–t/s] with the identical
weightsequal to 1 for all relaxationtimes of a network
(seeEq.(31)). A similar form is also typical of the time
dependent relaxation modulus G(t) (see, for example,
ref.[10]). It shouldbe especially noted that the relaxation
modulusG(t) is determinedby relaxation times s9 = s/2
becausethe relaxation spectrumof average squares of
normal modes pQ2P is excited in mechanical relaxa-
tion.[6, 4] In turn, the relaxation modulus G(t) determines
the relaxationspectrumH(s) (or the distribution function
of relaxation times s in logarithmic scale)10]:
G(t) = G(0)

R
H(s)exp[–t/s]dlns. Therefore, using the

expression obtainedfor C(ux; t) (Eq. (31)) one can esti-
mate approximately the asymptotic behavior of the
relaxation spectrum. The relaxation spectrumH(s) of a
two-dimensionalpolymer network is found to behave as
1/

���
s
p

in the region of intrachainrelaxation(at t s schain).
This behavior is closeto thatof a singleRousechain.[6, 11]

At greatertimes corresponding to the purely interchain
network relaxation (t S schain), the relaxation spectrum
H(s) decreasesmorerapidly according to the1/s law. The
asymptotic behavior of relaxation spectrumestimatedfor
thetwo-dimensionalregular network is in agreement with
resultsobtainedpreviously in ref.[12]

3. Comparisonwith a coarse-grainednetwork
model
As wasmentionedin Part1 of this series,[1] the interchain
collective relaxation of a two-dimensionalnetwork may
be described by a simplified coarse-grained network
modelin which thesmall-scale intrachain motionsarenot
taken into consideration. A comparison betweenlong-
time relaxationpropertiesof the coarse-grainednetwork
model and the network consisting of multisegmental
Gaussianchainsis of special importance because of the
simplicity of the coarse-grained model of a two-dimen-
sionalnetwork.

If the motionson sufficiently large scalesare consid-
ered,the sets of relaxationtimesof both networkmodels
shouldcorrespondto the long-time collective relaxation
only. For large-scale motions(h1;2 s p) the setof relaxa-
tion timesobtainedfor thecoarse-grainednetworkmodel
(seeEq. (26) in ref.[1]) mayberewrittenas

s�~h� X 8smin�1=h2� �37�
where smin = &/8K is the minimum relaxation time of a
simplified network model, and h2 = (h1)2 + (h2)2 is the
squareof interchain wavevector~h. Thecorresponding set
of relaxation times snet of a network of multisegmental
chainsaredeterminedfor large-scalenetwork motionsby
Eq. (8). The relaxation times of a two-dimensionalnet-
work consisting of multisegmental Gaussian chains
(Eq. (8)) haveto be equal to thoseof simplified coarse-
grained network (Eq. (37)) in the region of large-scale
collective motions. Therefore,the characteristictimesof
both network modelsshouldbe relatedin the following
way:

smin � �n� 1�2s0 �38�
Then the relationsbetweenparameters(elasticity and

friction constants)of both dynamic modelsof a network
may be obtained.The elasticity constant K of a spring
betweenneighboring junctions of a coarse-grained net-
work model correspondsto the elasticity constant of the
multisegmental chain as a whole. The multisegmental
Gaussian chain between network junctions contains
(n + 1) subchains acting as springswith elasticity con-
stantsK0, i. e.we have

K � K0=�n� 1� �39�
With theuseof Eq. (38) and(39), the relation between

friction constants& and&0 maybeobtained

& � 2�n� 1�&0 �40�
Thus, the friction constant of a junction of coarse-

grainednetworkmodelshouldbe the sumof the friction
constant of a junction of network of multisegmental

Fig. 9. NormalizedautocorrelationfunctionsC0(ux(j); t) of dif-
ferent subchain vectors of a network chain (n = 20) at times
t S s0. Curves j = 11 and j = 1 correspondto themiddle andpe-
ripheralsubchains,respectively
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Gaussianchains2&0 (seeEq. (9) of Part1 of this series[1])
andthe friction constant 4(n/2)&0 of halvesof four multi-
segmentalchains directly attachedto a given junction of
two-dimensionalpolymernetwork.

It is also interestingto comparethe relaxation proper-
ties of junctions of a two-dimensional polymer network
consistingof multisegmentalGaussianchainswith those
of a simplified coarse-grainedmodelof a network. Using
thenormal modetransformation(seeEq. (28) of Part1 of
this series[1]) we obtainfor themean-squaredisplacement
of a junction of coarse-grainednetwork model

DX2�t� � DX2
C�t� �

kBT
K

1
N2

6
X
~h6��0;0�

1ÿ exp�ÿt=s�~h��
2�2ÿ cos h1 ÿ cos h2� �41�

wherethe relaxationtimes s(~h) and the interchain wave
vector~h = (h1,h2) aregiven by Eq. (26) and(7) of Part1
of this series[1], respectively. The displacementof the X
projectionof the centerof massof a coarse-grained net-
work modelDX2

C�t� is givenby Eq. (5) with thetotal fric-
tion constant &NET of a network equal to N2&. At times
smaller than the minimum relaxation time smin of a
coarse-grainednetwork model, themean-squaredisplace-
mentof a junction DX2(t) with respect to centerof mass
of a network behavesas:

DX2�t� X kBT
K

1
4

t
smin

�42�

At times t A smin the quantity DX2(t) increases accord-
ing to logarithmic law for infinitely largenetworks

DX2�t� X kBT
K

1
2p

N ln
p2

4
t

smin

� �
�43�

A comparison of the mean-square displacements of
network junctions of a coarse-grained network model
(Eq. (43)) and a network of multisegmental chains
(Eq. (12)) with theuseof the relation betweentheir char-
acteristic times(Eq. (38)) shows that thedynamic behav-
ior of both network models at sufficiently long times
t S smin areequivalent (Fig. 10).

With the useof normal modetransformation(Eq. (28)
in ref.[1]), onecanalsoobtaintheexactanalytical expres-
sion for the autocorrelation function of the end-to-end
chain vector betweenneighboring junctionsof a coarse-
grainednetwork model

C�hx; t� � 1
2

1
N2

kBT
K

X
~h

exp�ÿt=s�~h�� �44�

The equilibrium value of the meansquareof the end-
to-end distancebetweenneighboring junctions C(hx;0)
= ph2

xPCG of a simplified network modelis given by

ph2
xPCG � 1

2
kBT
K

�45�

At short times (t a smin) the autocorrelation function
C(hx; t) hasthebehavior

C�hx; t� X ph2
xPCGÿ kBT

K
1
4

t
smin

�46�

At greatertimes(t A smin) thequantityC(hx; t) decreases
as

C�hx; t� X kBT
K

1
p

smin

t

� �
�47�

The substitution of Eq.(38) into Eq. (47) shows that
the long-time tails of autocorrelationfunctionsC(hx; t) of
a coarse-grainednetworkmodelanda network consisting
of multisegmental Gaussianchains (Eq. (19)) arecomple-
tely equivalent(Fig. 10).

Thus, one can conclude that the simplified coarse-
grained network model providesa good fit to the local
relaxationpropertiesof network junctionsat timesgreater
than the minimum relaxation time of this simplified
model (Fig. 10). Note that in the limiting case(n = 0) of
two-dimensional network consisting of multisegmental
Gaussianchains,which corresponds to thecoarse-grained
network model,thesetof relaxation times(Eq. (6) of Part
1 of thisseries[1]) andtheconsidereddynamiccharacteris-
tics of junctions (Eq. (4) and(15)) areexactly equivalent
to thoseof thesimplified network model (Eq. (26) of Part
1 of this series,[1] Eq. (41) and(44)).Moreover, theequili-
brium value of the meansquareof the end-to-end dis-
tance betweenneighboring junctions ph2

xPCG of a coarse-

Fig. 10. Reduced mean-square displacementof a junction
DX2

0�t�=ph2
xP andnormalizedautocorrelation functionC0(hx ; t) of

theend-to-endchainvectorbetweenneighboringjunctionsfor a
squarenetwork consistingof multisegmental Gaussianchains
(lines with solid circles(0)) andfor a simplified coarse-grained
networkmodel(lineswith opencircles(9)). In this casen = 20
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grainednetwork model (Eq. (45)) is equal to thatof a net-
work of multisegmentalchains(Eq. (16)) if the relation-
shipbetweenelasticityconstantsof both networkmodels
(Eq. (39)) is taken into account.This fact has a simple
physical meaning and confirms the theory presented.
Thus,thereis a completeagreement betweenthenetwork
consisting of multisegmental Gaussian chains and the
simplified coarse-grainedmodelof a networkat a proper
relationship betweenthe parameters of these dynamic
models. Hence, the possibility of using the simplified
coarse-grainednetwork model to describethe long-time
dynamic behavior of a two-dimensional network is
demonstrated.

4. Comparisonwith a thr ee-dimensional
polymer network

A comparison betweenlocal dynamic characteristicsof
two- and three-dimensionalpolymer networks is of spe-
cial interestbecausetheeffects relatedto theconnectivity
of polymer chains into an unified network structureare
expected to be manifested in relaxation of two-dimen-
sional networks in a weaker way as compared to the
three-dimensionalcase.Thelocal dynamic characteristics
of a three-dimensional cubic network havebeenconsid-
ered previously by the authorsin ref.[5] The intrachain
wave vectorw, determining the set of relaxation times,
hasthe similar form for two- andthree-dimensional net-
works.It contains thecomplicatedbranchw1 correspond-
ing to both the intra- and interchain relaxationprocesses
andthe purely intrachain branchw2 correspondingto the
relaxation of a polymer chainwith fixed ends.The latter
branchw2 is doubly degenerated in the caseof three-
dimensional polymernetworks.[5] As a result,the normal
modesof a cubic network have the more complicated
structure,namely, theycontainthreedifferentsetsof nor-
mal modes5]. The phaseshift~h betweendisplacementsof
neighboring cells of the network with a two-dimensional
connectivity is determinedby two independent compo-
nentsh1 and h2 in contrast to the three-dimensional net-
work systemin which thereis the three-component inter-
chainwavevector.[5]

The mean-squaredisplacements of junctions of two-
and three-dimensional polymer networkshave the same
behaviorat sufficiently shorttimesup to a relaxationtime
schain of a chainbetweenneighboringjunctionsbecausein
this time rangeDX2(t) is mostly governed by small-scale
intrachain motions. The considerabledifferencebetween
networks with different dimensionality of chain connec-
tivity appearsin the region wherethe interchain collec-
tive relaxation processesprovidethemaincontribution to
the mean-squaredisplacementsof network junctions, i. e.
at times t A schain. It has been shown[5] that the mean-
squaredisplacement DX2

0�t� of a junction of a cubic net-
work at long times t A schain behavesas const–

�������������
schain=t

p

andtends to the finite limiting valueevenin the caseof
aninfinite largenetwork(Fig. 11). In contrastto thecubic
network,themean-squaredisplacementof a junctionof a
squarenetwork with respect to the center of mass at
t A schain increasesas ln(t/schain) and hasno finite limit in
the caseof infinite large network (Fig. 11). This increase
in mean-square displacement at long timesis completely
determinedby interchain motions of a network. There-
fore, the ratio of inter- and intrachaincontributions also
increasewith time (Fig. 2). In contrast,in the caseof the
cubic network, the contribution of interchainmotions to
the limiti ng value DX2

0�t�(t ev) is about six times
greaterthan that of intrachain motions andremainscon-
stantwith time.[5] In the caseof a two-dimensional net-
work of finite size, the mean-square displacement of a
junction reaches the finit e limiting value that increases
according to logarithmic law with the network size.It is
also in contrast to the three-dimensional network in
which thelimiting value of DX2(t) doesnot depend on the
sizeof the network asa whole5]. Similar conclusions can
be also made with respect to the mean-squaredisplace-
ments of non-junction beadsof two- and three-dimen-
sionalnetworks.

TheautocorrelationfunctionsC(hx; t) of theend-to-end
chainvectorbetweenneighboring junctionsof squareand
cubic networks havethesamebehavior at times t a schain,
i. e. in theregionwherethetime dependenceof C(hx; t) is
mostly determined by intrachain motions (Fig. 12). At
greatertimes the interchain collective motions provide
the main contribution to the time dependence of C(hx; t),
and the autocorrelation functions of two- and three-
dimensional polymer networkbegin to differ. It hasbeen
shown for cubic networks[5] that C(hx; t) decreasesat
t A schain as (schain/t)3/2. The autocorrelation function

Fig. 11. Reduced mean-square displacement of a junction
DX2

0�t�=pu2
xP of two-dimensional (line with solid squares (f)) and

three-dimensional (line with open squares(F)) polymer net-
works.In this casen = 20



Theoryof relaxationpropertiesof two-dimensionalpolymernetworks,2 427

C(hx; t) of a two-dimensionalnetwork behavesas (schain/
t), i. e. decreasesmoreslowly at long timesascompared
to a cubic network (Fig. 12). This corresponds to the dif-
ferent behaviorof the relaxation spectrumH(s) of two-
and three-dimensional networks in the region of inter-
chain collective relaxation (s A schain): H(s) l s–1 for
squarepolymer networks andH(s) l s–3/2 for cubic ones.
A similar differenceis manifestedin theconsideration of
autocorrelation functions C(ux; t) of subchain vectors.
However, this differencebetweensquareand cubic net-
works is practically indistinguishable becauseit appears
in the time behaviorof C(ux; t) whenthis autocorrelation
function decreases considerably and becomes about
(n + 1) times smaller than the equilibrium value of the
meansquareof a subchain vectorpu2

xP.

5. Conclusion
To sumup, onecansay that the local relaxationproper-
ties of the regularpolymer network havinga two-dimen-
sionalconnectivity is very closeto that of uncross-linked
polymersystems at timessmaller thantherelaxation time
schain of a network chain betweencross-links,i. e. in the
region of preferably intrachain relaxation.Sucha situa-
tion takespartalsofor three-dimensional networks.[5, 13,14]

At greatertimes (t A schain) corresponding to large-scale
collective relaxation, the dynamic behavior of a two-
dimensional polymer network differs considerably from
that of a three-dimensional one.For example, the mean-

square displacementsof network elementsin the case of
infinitely largesquarenetworks do not tendto finite lim-
iti ng valuein contrastto cubic polymernetworks,andthe
end-to-endchain vectors betweenneighboring junctions
of a two-dimensional network relaxes more slowly as
compared with the network having three-dimensional
connectivity.[5] The long-time collective relaxation of a
two-dimensional network may be describedin a good
approximation by a simplified network model at the
appropriate relationship betweenelasticity and friction
constantsof simplified anda more realistic network mod-
els.

To conclude,the next stepconcerning investigation of
dynamics of two-dimensional polymer networks is to
comparethe theoretical predictions obtainedwith results
of recent computersimulation of regulartwo-dimensional
polymernetworks.[15,16]
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