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Full Paper: Using normal modetransformationobtained
in Part1 of this seried, the exactanalytical expressias
for the mean-squarelisplacement®f junctionsand non-
junction beads,the autocorrelationfunctions of the end-
to-end chain vectorsbetweenneighboringjunctions, and
those of subchainvectorsof a two-dimensionalregular
networkconsistingof “beadandspring“ Rousechainsare
obtained.Contributionsof intra- andinterchainrelaxation
processeso the local dynamiccharacteristiczonsidered
are compared.The time behaviorof dynamic quantities
obtainedis estimatedfor differentscalesof motions.The

possibility of describinglong-time relaxation of a two-

dimensionalnetwork by a simplified coarse-graineahet-

work model is demonstratedlt is shown that the local

relaxation propertiesof a two-dimensionalpolymer net-
work (aswell as a three-dimensionahetwork) on scales
smallerthanthe averagedistancebetweencross-linksare
very closeto thoseof a single Rousechain. The large-
scalecollectiverelaxationof the polymernetworkshaving
a two-dimensionakonnectivity differs considerablyfrom

thatof the three-dimensionatetworks.

Theoryof relaxationpropertiesof two-dimensional

polymernetworks,2?

Local dynamiccharacteristics

AndrewA. Gurtoverko,* Yuli Ya. Gotlib

Instituteof MacromoleculacCompoundsRussianAcademyof Sciences,

BolshoiProspecB1, V. O., St. Petersbug, 199004 Russia
andrew@imc.macro.ru

(ReceivedDecembei7, 1999)

1. Intr oduction

In Part1 of this serie§! we haveobtaineda setof relaxa-
tion times andthe transformatbn from Cartesian coordi-
natesof netwok elenentsto normal modesfor a two-
dimensiamal polymer netwok corsistingof multisegnen-
tal Gaussia chairs and for a simplified coarse-graiad
netwolk modeldescibing only the large-scée collective
relaxaton of a network.In this paperthe exactanalytical
expresins for variouslocal dynamicchamcterigics of a
two-dimensional polymer netwok will be calculaed
usingthe normd modetransbrmationobtaned.

The paperis orgarized asfollows. Forthe polymernet-
work consising of multisegmenal Gawssianchans, the
meansquaredisplacenents of junctions and nonjunc-
tion beadsof network chairs, the autacorrelationfunc-
tions of the end-teend chain vectorsbetweenneighbor
ing junctions, andthase of subchainvectas will be con-
sidered.Theselocal dynamic charateristicsof the poly-
mer networkhaving a two-dimensonal connectivty were
not studiedpreviously For all dynamic chamcterigics of

2 ForPartl seeref™

a squarenetwok the comparisonof the contibutions of
small-scaé intrachan andcollectiveinterchainrelaxation
processsis mace. The long-time relaxationpropertiesof
networkjunctionswil | be comparel with analagousprop-
erties of junctions of a simplified coarse-graired model
of a two-dimensionalnetwak, which may also be ana-
lyzed using normal mode transfamation obtained in
Partl of this saies™ A compaison between local
dynamic propertiesof two- and threedimensiamal poly-
mer networks will be made. Moreover, the relaxation
propertiesof a squae polymer netwok and a singe
Rousechainwill be alsocomparedanddiscussed.

2. A two-dimensionalpolymer network
consistingof multisegmental Gaussian
chains

2.1. Relaxationpropertiesof networkjunctions

Now we shallconsderthelocal dynamiccharacteisticsof
junctionsof a two-dimensioral polymernetwoik consist
ing of multisegmertal Gaussiarchairs. The meansquare
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displacenents of netwok junctions and the autocorre-
tion functions of the endto-end chain vectas between
neighbaing junctions will be studied. These dynamic
charateristicsmay be marifested, for exanple, in dielec-
tric and mechanical relaxationof cross-linkedpolymers,
incoherent dynamicscatteing, NMR phenonena etc.

The mean-squa displacenent AX?(t) of the X projec-
tion of the positionvecta of a netwok element is deter
minedas

AXE(t) = {(X(t) = X(0))%) = 2(¢X? —(X(0)X(1))) (1)

where({ ) meansthe configuratonal average The mean
squaredisplacenents describethe translatonal diffusion
of networkelements (junctionsandnon-jundion beadsof
network chains).To calculate the quantiy AX?(t) for a
junction of atwo-dimensionainetwolk conssting of mul-
tisegmendl Gauwssianchains,the normd mode transfa-
mation obtainedin Part 1 of this seriesshoud be used
(see Eq.(22) in ref™). Since the normal coadinates
obtainedin ref™™ are independentand orthogoral, i.e.,
(Q(O; w; 0)0Q(F'; /s 1)y = 01if 6 # ¢’ and(or) w # v/, the
mean-squar displacenent AX3(t) of a netwok junction
includes only the autocorreléion functions of normal
modes{Q(0)Q(t)>. If y # 0 theseautccorrelation func-
tionshavethefollowing time behavia:

(Q(0; w; 0)Q(0; w; 1)) = KQ¥(0; w; 0)) exp|—t/7(w)] 2

In orderto obtainthe equilibrium values of squaresf
normal modes <Q%, the law of equal distribution of
enegy accoding to classicd degreesof freedan for a
harmonicoscillator hasto be used.As a result, we have

forwy #£0

ke T
Ko2(1 — cos ) 3

where K,2(1 — cosy) are the eigervalues of potential
enegy of a two-dimensional netwok (see EqQ.(18) in
ref). The normal mode Q with intrachain wave vecta
w =0 provides an additional contibution to AX2(t),
which correspond to the displacenent of the cente of
massof a netwok.

The consective use of the normal mode transbrma-
tion for calcuating mean-squar displacemat of a net-
work junctionyields

(Q(0; y;0)) =

AXG(t) = AXE(t) + %m

1—exp|—t/7(y,
cyy Aol "

— —cosy)

6 v17#0

whereN? is the total numbe of squae cellsin a netwak,
and n is the number of bead in the netwok chain
between neichboring junctions. The relaxaton times
7(w), intra- and interchain wave vectors y; and 6 are

given by Eq.(6), (12), and (7) of Part1 of this serieg!

resgectively. The term AXZ(t) in Eq.(4) represets the
squae of displacenent of the X projecion of the center
of massof atwo-dimensionalpolymernetwork,namnely,

2k T

SNET

AXE(1) = t (5)

where ger = 2 (N + 1)N?g, is the total friction constantof
the two-dimengonal netwok asa whole. We are mostly
interestedn thetime depadenceof meansquaredispla-
cenment of a netwok junction to the exclusion of the tri-
vial displacenent of centerof massof the network sys-
tem, i. e. thetime behaviorof AX3(t) — AX4(t) is of most
interest. Therefore, the term AXZ(t) will be omitted
below, andthetime dependenceof mean-squaredispgace-
mert with respet to the centerof massof a netwok will
be consideed. The meansquaredisplacenent of a net-
work junction AX?(t) (seeEqg.(4)) is determinedby the
wave vecta y, only (purely intrachain branchy, is not
includedin AX2(t) for the network junctiong. It should
be emphasizedthat the quantiy . dependsn the phase
shift 6 betweennetwok cells in a rather conplicated
mamer (see Eq.(12) in ref¥). Therefore, the mean
squae dispacementof a netwok junction is deternined
by boththeintra- andinterchainrelaxationprocesss.

Using the exact expres®on for the mean-sqare dis-
placementof ajunction of a two-dimensonal regularnet-
work, one can study the asynptotic time belavior of
dynamicquantityAX?(t) andcomparethe contribuions of
intra-andinterchainmationsto meansquarelisplacemat
of ajunction. To obtainthe agymptotic behavig of AX?(t)
aswell asother dynamic charaderisticsof a netwok, the
following approxmationwill beused.Thewavevecor v,
(seeEqg.(12) in refX) atl = 0 is equalto the quantity y e
(Eq. (14) in ref™) and deternines the interchain large-
scalemationsonly. Thenormalmodesat! # O corespond
to the contribution of intrachain motionsto meansquare
dispacemat of a networkjunction. In the caseof suffi-
ciertly long Gaussanchansbetweerjunctions the phase
shift 6 betweemetwokk cells hasaslightinfluenceonthe
relaxationtimesz(y) atl # 0. Therdfore,onecanassume
in the first approxmation that the wave vector (1, 6) at
| £ 0 doesnot dependon the phaseshift 6 betweenthe
mations of netwok cells. Thus, we have the following
appoximation for wave vector y; in the case of suffi-
ciertly long polymerchairs betweercross-links

1 1
w,(1=0)= e arccos- (cos By + cos ;) (68

w1 £0)=2n/(n+1), 1=1, .

Note that the set of wave vectas (I # 0) is dowbly
degeneratedecausdwo signs: correspndto eachvalue
of lin Eq.(12)in ref™

.n/2 (6b)
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Thenthe mean-sgaredispacementof a junction with
respectto the center of mass(Eq. (4)) may be presented
in thefollowing approxmateform:

) _ kBT 1 1 1-— eXp[—t/T(V/nel)]
AXS(t) = K—Omﬁ [zg: 2(1 — cos ey

s L= expl—t/e(p(1 £ 0)
D T s £0) } i

Thefirst term in bradketsof Eq. (7) correspndsto the
contribuion of interchain long-scaé motions to the
meansquaredisplacemat of a netwok junction. The
seconderm correspndsto the intrachaincortribution to
AXZ(t). The first term in Eq.(7) representsthe dowble
sum taken over comporents 6, and 6, of the interchain
wave vector In orderto simplify this tem, the compo-
nentsof the wavevectorf canberegardedascontinuous
variabkesin the ca® of a netwok with a greatnumter of
junctions (N> 1), and the long wave appoximation?-!
shouldbe used(0;., < n). In this casethe relaxatontimes
of interchaincollective motions et = 7(ne) May be pre-
sentedas(seeEq. (6) and(14)in ref):

Toe = 8(N+ 1)°1(1/6°) (8)

Here 62 = (0,)%+ (6.)? is the squae of the interchain
vecta 6 and 70 = /4Ky is the relaxaton time of a single
Gaussia subchainTherelaxationtimest,e in long wave
approxmation dependonly on the squareof the inter
chainwave vecor 6. Therefore, it is conveniet to intro-
ducea polar coordnate systeminto double integralsand
to integrateoveranangularvariable.

Using the aboveapproxmations a comparisonof the
contribufons of intra- andinterchan relaxation proceses
to the meansquaredisplacenent of a junction can be
madefor differert scalesof time. The initial slopeof the
time dependece of AXZ(t) may be easily obtained
directly from rigorous expresin givenby Eq. (4). Treat-
ing Eq. (4) att < 7o we have

s =T 1L o

Intrachain motions domirate in the initial slopeof the
meansquare displacenent of a junction (Fig.1). The
contributon of intrachainmotionsis (n + 1) timesgreater
than that of interchain collective mations. At times
greaterthan 7, but much smaller than the maximum
relaxatontime zqnain Of a chainbetweemeighbaing junc-
tions (seeEq.(16) in ref), the mean-squae displace-
mentof anetwok junction behavesas

T 1 [T
AXC(t) = ";0 Ve

(10)
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Fig.1. Reducedmean-squaréisplacemendf a netwok junc-
tion AX2(t)/<h2) (solid line). Lines with open circles (o) and
solid squareq(m) correspondio the contributionsof inter and
intrachainrelaxation processestespectively The quantity <h?)
is the mean squareof the end-toend chain vector between
neighboringunctions in this casen = 20

This time deperdenceis typical for that of a beadof
long Gaussan chain!®” The intrachan motions also
dominatein this time range.At times closeto tcnan the
interchaincollective motionsbeginto providethe notice-
able contribuion and the time behaior of AX3(t)
changes

kT 1 [T

T t
a0 = 42 L

Ko 8(n+1) 7o

Vs (12)
Thefirst termin Eg. (11) correspond to the contibu-
tion of intrachain motions (comparewith Eq.(10)). The
secondermrepresentgheinitial slope of contribuion of
interchaincollective mations (the times 7o < t < Tchain COr-
respondto the short time range for these largescale
motiong. The contibutions of intra- and interchan
motionsto the mean-sqare disgdacemant of a netwok
junctionbecomeapprodxmately equalatt = 7¢pain (Fig. 1).
At times greder thanthe relaxationtime z¢nain Of @ chain
betweemeighboringjunctions(t > z.ni) the meansquare
displacenentAX2(t) hasasynptotic behavior

t
*In ( >
Tchain

At t > 7cnain the intrachain relaxation processeslo not
influence the time dependace of the meansquaredis-
placementof a junction and give only a constantconti-
bution. The interchainnetworkmations provide the main
contribution at t> 7. @and complekly deternine the
time dependece of AX2(t). The meansquaredisplace-
mentof ajunction of two-dimengonal polymer netwoks

keT (n+1)
KQ 2n

AX(t) = (12
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increasesaccoring to logarithmic law at long timesand
hasno finite limiting value in the caseof infinitely large
networks.

It shouldbe noted that for the squarenetwoik of finite
size, which contains N? network cells, the asymptdic
behavior given by Eq.(12) holds up to the maxmum
relaxationtime of the netwok asawhole tyax ~ N?Tchain.
At timesgreaterthantyax the meansquaredisplacemat
of a squarenetwok reachesthe finite limiting value
determineddy the netwok size

M), =

whereN is the numberof netwok junctions along each
network direction. Note that Eq.(13) may be directy
obtainedfrom Eq.(12) at t = Tyax . One canseethat the
limiting value of meansquaredisplacenent of a junction
dependn the networksizeaccordirg to logarithmic law
thatis in agreemenwith resultsof Ronkaand Allegra®
They haveshownthatthe mean-squareradiusof gyration
of the netwok increass logarithmically with total num-
berof chairs for netwoks having a two-dimensionalcon-
nectivity® The limiting value of quantity AX2(t) is
mostly deternined by contribution of interchainmotions
which is proportiond to InN. In contast, the intrachan
contribution doesnot dependon the size of the netwok
asawhole (Fig. 2). Theinterchan contribuion Ci, to a
limiting value of meansquaredisplacenent of a junction
of the squarenetwork having finite size,is much greater
thanthe intrachan contibution Ciyya, namely, Cier/Cinta

(n+1)

“InN (13)

3,05
2,54

2,0

AX(t)/<h?>

T T T 1
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t/z
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0 500 1000
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Fig.2. Reduced mean-guare displacemat of a junction
AXZ(t) /<h2) of the squarenetworksof finite sizeswith N =50
(solid line) andN = 25 (dottedline). Lines with opencircles (o)
andsolid circles(e) correspondo the contributiors of interchain
motions for networks with N =50 and N =25, respectvely.
Lines with solid squareqm) correspondo the contributionsof
intrachainmotionsfor both networksof differentsizes,in this
casen =20

= (12/7)In(N/2). It shoud be especiallyemphasied that
all curves in figures are plotted using exact analytical

expressionobtainedfor dynamic chamcteridics of a net-
work (seeEq.(4) in the caz of meansquaredispace-
mert of ajunction AX3(t)). Theabovemertionedapprox

imationsareusedonly to estimate the asynptotic behav-
ior of dynamicchalcteristicsconsideed.

Besidesthe meansquaredisplacenent, the time auto-
comelation function of the end-teend chain vector
betweenneighboring junctionsalso represets an impor-
tantdynamt quantity charaderizing Brownian mation of
a network. The projecions of the end-to-ei chainvec-
tors betweenneighbaing junctions take the following
form (there aretwo end-to-encchainvectas per cell of a
squae netwok)

ha(a, B;1) = Xo(a, B; 1) — Xo(a — 1, ;1) (149

he(a, B;t) = Xo(a, Bit) — Xo(a, f — 1;t) (14b)

As in the caseof mean-squar displacenent, with the
useof normalmodetransfamation (Eq. (22)in ref) for
calcdating time autacorrelgion function C(hyt) =
{hy(0)hy(t)> we have

T 1
Ot = e 1y 2 2o

y 2 —cos O, — cos 0,
1—cosy,

(15

With the useof numeical calcukltions,the equiibrium
value of the meansquareof distancebetweenneighba-
ing junctions <h?) = C(h,;0) averayed over all netwok
chansmaybeappraximately presentedn theform

2,%,2 D KR (2;0)) + <, (Q; 0)))]

1 kT
2 K

2y =

(n+1) (16)

At shorttimes (t < 7) the autacorrelaion function of
theend-teendchainvector betweemeighboringnetwok
junctionsbeharesas

keT 1 t
KO 4'['0

Clhat) = (h2) — (17)

The time dependence of autacorrelation function
C(hy; 1) = (hy(t)h(0)) at shorttimes comresponéhg to the
initial slope is mostly determinedby intrachain motions.
However the contributon of interchain collective spec-
trum to the total autccorrelaion function C(hy;t) (time-
dependentpartandequilibrium value of mean-squardis-
tanee ¢h2)) at short times is appoximately four times
greaterthan that of intrachain spectrun (Fig. 3). In the
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Fig.3. Normalized autocorreltion function Co(hy;t) of the
end-to-endchain vector betweenneighboringjunctions (solid
line). Lines with opencircles (o) and solid squars (m) corre-
spondto the contributionsof inter- andintrachainrelaxationpro-
cessesiespectivelyThe quantityn is equalto 20

time rangefrom relaxationtime 7, of a Gaussiarsubclain
to relaxatbn time of a netwok chain betweencross-lnks
Tehain (S€EEQ. (16) in ref™) the quantiyy C(h,;t) behaves

as
t
To

The time dependace of C(h;t) is still deternined by
intrachain relaxationprocesss, whereasthe total contri-
bution of these motions to autcacorrelation function
C(hy;t) is muchsmalker thanthat of interchain relaxaton
processs (Fig. 3). At times greater than the relaxaton
time of a netwok chan betweencross-links tcnan, the
quantity C(hy;t) behavess:

keT 1
KO 2n

Clht) = (h2) — (18)

(5

i.e., deceasedo zerowith time. The interchain motions
completly domirateatt > 7cnain, @andtheir contibution to
time dependenceof C(hy;t) is much greaer than that of
intrachain relaxation processesFig. 3).

C(h;t) = (19

2.2. Relaxationpropertiesof non-junctionbeadsof
networkchains

In orderto obtan rigorousanalyticalexpressnsfor locd
dynamt charateristics of non-juncton beadsof a two-
dimensimal regularnetwok, the normal mode transfa-
mation (seeEq. (19) of Part1 of this series!) shoud be
used.Forthe meansquaredisplacenentof a non-juncton
beadwe obtain the following expresin:

AXEG3t) = AXE(D) + e

n+1)
—eXp —t/7(w)]
ZZ (1—cosy,)

6 v1#0
E sin® jy,
V2

ke T 2
Ko (n+1)

Here the relaxationtimes z(y), intrachainvectas y,
and v, and interchain wave vecta @ are given by
Eq.(6), (12), (13), and (7) of Part 1 of this series¥
respectivey. The quantiy AX:(t) is the squareof dis-
placementof the X projecion of the cener of massof a
network, which is given by Eq. (5). Note that the mean
squaredisplacenent of a nonjunction bead(as well as
the dynamiccharaderisticsof netwok junctions(seepre-
vious sub-gction)) doesnot dependon the two-compo-
nent index of a netwok cell Q = (a,f) becawse all the
cells of a squarenetwok with periodic bounday condi-
tionsareequivalet. Moreover, the quantity AX?(j;t) does
not depend on the position of Gaussan chainsin a net-
work cell (indexp = 1;2) either, becaseof the symmetry
of aregular squarenetwork.

One can seefrom Eq.(20) that the meansquaredis-
placementof a nonjunction bead dependon the bead
positionj along the netwok chain(j = 1,..,n). At first, we
considerthe meansquaredisplacenent AX?(t) of a non
junction bead, which is averagedover bead postions
alongthe multisegnentalchain

1—exp[-t/z(y,)]
2(1— cosy,)

(20)

AX3(t) = (AX(j; 1)) ZAXZ i) (21)
AveragingEg. (20) overbeadpositiors, we obtain
2 a2 ks T 1
— exp[—t/7(y,)]
X
ZH: y%:o 2(1— cosy,)

+ Ko (n+1) ; 2(1—cosy,)

In contrastto netwok junctions (Eg. (4)), the mean
squaredisplacenent of a non-juncton beadof a netwoik
chainis detemined by wavevectas y; andy,. In addi
tion to the main branch describedby wave vecta w;
(Eq.(12) in refl), the purely intrachain branch v,
(Eg.(13) in ref!) corresponihg to relaxation of a net-
work chainwith fixed ends appers. Therefore the rela-
tive contribution of intrachain mations to the quantiy
AX3(t) increass as compare to that of a network junc-
tion.

The approxmate edimation of time dependencenhich
wasappliedin the consderationof dynamic chamlacteris
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Fig.4. Thetime dependencef reducedmean-guaredisplece-
ment of a non-junction bead AX?(t)/{u2) up to time t = 7cnain
(solidline). Lineswith opencircles(o) andsolid squars (m) cor-
respondto the contributionsof inter and intrachainrelaxation
processesiespectively The quantity{u2) is the meansquareof
asubclain vector In this casen = 20

tics of netwak junctions(seeprevioussub-setion) may
alsobe usedto analyze the mean-squaa displacenentsof
non-juncton beadsAs in the cas of a netwak junction,
we shall study the time dependece of mean-sgaredis-
placemen of a non-juncton beadAX?(t) with respect to
centerof massof a two-dimengonal network. The initial
slope (t < 7o) of AX?(t) averajed over the beadpostion
alongthe netwok chainis givenby:

keT 1 t
AXE(t) = =
( ) KO 2 To

(23

It is two timesgreaterthanthat for a netwok junction
(EQ.(9)). The contibution of intrachain relaxation pro-
cessesdomindes in the initial slope (Fig.4) and is
2(n+ 1) times greder than that of interchain collective
motions In thetime rangefrom 7, to relaxationtime tcnain
of a netwak chain betweenjunctions, the intrachain
relaxation processesprovide the main contibution
(Fig. 4), andthe guantity AX?(t) behavesas

ke T 2 t
AX3(t) = K /T—O

The mean-sgaredispacemat of a nonjunction bead
in this time rangeis alsotwo timesgreaterthanthatof a
networkjunction (Eqg. (10)). Note thatsucha type of time
dependeceis typical of the mean-squardisplacenentof
a bead of a single Gaussianchain®®™ At long times
(t > Tchain the meansquaredispgacementAX?(t) averaged
over beadpositiors along the netwok chain hasthe fol-
lowing asynptotic behavior

(24)

20+

—_
w
1

AX(t)/<ul>

t/z

chain

Fig.5. Thetime dependencef redwcedmean-squardisplace-
ment of a non-junction beadAX?(t)/{uZ) up to time t = 307chain.
The denotatiorof curvesis the sameasin Fig. 4

t
. ln( >
Tchain

The time dependece of AX?(t) in this time rangeis
conpletely determinedby interchan motions the intra-
chain mations provide only the consant contibution to
mean-squae disgacemant at t > tchain. The contibutions
of intra- and interchain relaxation processs become
equal att = S57¢nain (Fig. 5). Thus,in the sameway asdis-
placementof ajunction,the meansquaredisplacenent of
a non-juncton beadof a two-dimensonal polymer net-
work increasesnfinitely accordingto logarithmic law in
the caseof infinitely large netwok systens. For the two-
dimersional netwok of finite size sucha type of time
behavior holds up to maximumrelaxaton time of the net-
work as a whole tyax ~ N?7chain. At greatertimes the
guantity AX?(t) reacha the finite limiting value dete-
mined by Eq.(13). The interchain contribuion Ci to
limiting valueof AX?3(t) in the caseof the squarenetwok
of finite sizeis much greaterthanintrachaincontibution
Cinra, Which doesnot dependon the size of netwok asa
whole: Ciner/Cinra = (4/7)IN(N/2) (compare with analo-
gous expresmn for netwok junction).

As mertionedabove,the mean-squae dispacemaet of
a nonjunction beaddependson the beadposition along
the netwok chan. This dependenceis completdy deter
mined by the purely intrachainbranch y, (third termin
Eq. (20)). It canbe shownthat the abovedependace on
the beadpostion j is marifested only at sufficiently long
times t > zenain. FOr the asymptdic behavior of mean-
squae displacenent of a non-juncton beadAX?(j;t) we
obfain (cf. Eq. (25)):

i) ()] e

ke T (n+1)
Ko 2n

AX(t) = (25)

AX3(t) =

421
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Fig.6. Redued mean-squaredisplacementsAX?(j;t)/Ku2y of
differentnon-junction bead=f a networkchain(n = 20). Curves
j =10 andj =0 correspondto the middle bead of a network
chainandthejunction, respectively

One can see that the beadpositionj hasinfluenceon
the limiti ng value of the intrachain contibution only, the
time dependeaies of averagedand non-averagd mean
squaredispgacemats of non-juncton beadsat t > tcpain
areidentical (seeEq. (25) and (26)). In Fig. 6 the mean
squaredisplacenents of nonjunction beadsare plotted
for differentbeadsof a netwok chain(j = 1,...,n) for the
casen =20. The beadin the middle of a netwok chain
(j =10) “feels” the restictions relatedto the inclusion
into the networkstructureleastof all. In cortrast,the net-
work junction (j =0) hasthe lowest diffusive mobility.
Thediffusive mobility of intermedide nonjunction beads
increasewith distancefrom the netwok junction (Fig. 6).

Now we consideranoher dynamic quantity descibing
local relaxationof non-juncton beads- thetime autoor-
relation function of the end-teend chainvecior between
neighbaing non-juncton beadgsubchan vecta). The X
projecion of a subctain vecior uy is determinedas

(€3 1)

= X(Q;);1) — X(] — 1;1)

With the useof normal mode transformaton for non
junction bead (Eq. (19) in ref™), for the automrrelation
function C(uy;t) = {ux(0)ux(t)) we obtain:

(27)

SO0 = a3y 2 el Helwa)
T 1 (1
ECEP (J ‘7) v2

x exp[=t/7(y,)] (28)

Using Eg.(28), the equilibrium value of the mean
squareof a subch@n vecta {u?) averged over all sub-
chairs of atwo-dimensionainetwok maybe calcuated

n+l

<u2>—W 2n+1 PIDICCAHOERTA(HON

af j=1
ke 1
T Ko { B 2(n+1)}

It shouldbe noted that in the limiting case n=0 the
quantity{u?) correspond to the equilibrium value<h?)c
for a simplified coarse-gained netwok model and is
equalto ksT/2K (seebelowv Section3). In contrastin the
limiting casen — oo correspndingto a single Gaussan
chain, the mean squareof the subclain vecbor {u2) is
equalto ksT/Ko, i.e. to the analgousequilibrium quan-
tity of alinearGaussianchain!® 79

Eq. (28) indicatesthat the autocorrehtion function of a
subchainvecta C(u(j);t) dependson the postion of a
subchain along the multisegnental Gauwssian chain
betweennetwok junctions (j = 1,...,n+1). In the same
way as for mean-squae disdacementof a nonjunction
bead.,it is convenentat first to considerthe autocorreh-
tion function C(u;t) avelgedover subchainpostions
alongthe netwok chain

(29)

nt1

1 .
] > Cluis b))

=1

C(ugt) = (30)

After avemmgingwe obtain

keT 1

ClUst) = S 2mr 1)

N2 ZZQXP —t/7(yy)]

+ ) expl-t/ T(‘//z)]:|

w2

(31)

The autocorredition function C(uy; t) averagedverthe
subchainposition along the netwak chain behavesat
shorttimes(t < 7o) as:

keT 1 t
021’0

Clugt) =Wy — (32)

Eq.(32) correspond to the expansionin a seies of
exp(-/r) at shorttimest< 1, (see Eqg.(31)). At times
from 7, tO 7chain this initial slopeis replacedwith a power
law behavior typical of a singleRousechair® 79!

To
e

The intrachain relaxation processs provide the main
contribution to the time dependenceof autacorreldion
function C(uy;t) up to t = tenain (Fig. 7). In thetime rarge
7o <t <€ Tenain the cortribution of interchain collective
motionsis abaut (n + 1) timessmaler thanthat of intra-

chainmotions Theinterchaincollective mationsbegi to
be marifested at times greaterthan the relaxation time

ke T 2
KO T

Clugt) = (33)
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Fig. 7. Normalized autocorrelatiorfunction Co(uy;t) of a sub-
chainvector (solid line). Lines with opencircles (o) and solid
squaregm) comespondo the inter andintrachaincontibutions,
respectivelyln this casen = 20

Tenain OF Network chainsasa whole, and C(uy;t) decreases

morerapdly

Clugt) =

ke T T 1 ( Tchain ) (34)

Ko 4 (n+1) t

Note that the autccorrelation function C(uy;t) at
t > 7cnain deceasesonsderablywith respecto the equili-
brium value C(uy;t) = {u2) (at t = zcnain it becomesabout
(n+ 1) timessmaler than{u)). Therdore, the influence
of interchain relaxationprocesse®n the quantity C(uy;t)
is negligiblein thetime range from 7, to zchain (Fig. 7).

It is interestingto studythe dependecoe of the autocor
relation function of subchainvectors C(u(j);t) on the
position of a subchain j along the multisegnental chain
between netwok junctions Eq.(28) shows that this
dependeceis governedby the term detaminedby intra-
chain wave vector y,. This means that the autocorrela
tion function of a subchainvecta will be sensitive to the
subchainpostion along the chan in the regionof prefer
ably intrachain relaxation,i. e. at times smallerthan the
relaxationtime zqnain Of Netwok chainasawhole. At short
timescorrespndingto theinitial slope(t < 7o), the auto
correlation function of subchains which are directly
attachel to the netwok junctions (j=1 andj=n+1)
behavess:

keT 3 t
Ko 8 1o
For other non-jundion beads (j =2,...,n) EQq.(32)
obtainedfor the autocorreléion function averagedover
bead postions holds. Thus, even for the shortesttimes
t < 7o the autacorreldion function of a nonjunction bead
is very sensitve to the fact that the given subchin con-

Clugt) =2y — (35)

—— (=D &(j=nt])
—8— j=2..n

0,91

0,8

Cy(ug@);:t)

0,7

06 . . . . . . . " . .
0,0 02 0.4 0,6 08 1.0

t/z

0

Fig.8. Normalizad autocarelationfunctions Co(Uy(j); t) of dif-
ferent subchainvectors of a network chain (n=20) at times
t < 70. Solid line correspondgo the peripheralsubchaingj =1
andj = n + 1), andline with solid squars (m) correspondso the
innersubchaingj = 2,...,n)

necs either the junction and nonjunction bead (periph-
eral subchainof the netwok chainbetweenjunctiong or
two non-juncton beads(inner subdains).lIt is seenthat
the peripheal subctains relax more slowly as comparel
to the inner subclains of a chain betweennetwok junc-
tions(seeEq. (32) and(35), andFig. 8).

In the time rangefrom 7, t0 7chain the autacorrelation
functionof a subctain vectorbehavess

. T 3 o
Clu = = [ 2

kBT 2 . 2( To 3/2
o B V()

for subchainswithj = 1,..,n/2 and

(369

Clu(i)t) =

kBT 3 To
Ko T t

ks T 2 . 2/ To \3/?

a2ty (T) (36b)
for subchains with j=(n/2)+1,..,(n+1). Note that
Eq. (36) arewritten for the cae whenn is an evennum-
ber Eq.(36) indicatethat the dependece of the autocor
relation function C(u(j);t) on the subdiain positionj in
the time range 7o <t < tchain IS Manifesed in the next
time-dependentermm of the expansionas compae to the
averged quantity C(u;t) (see Eq.(33)). In Fig.9 the
autccorreldion functions of subchain vectas is plotted
for subchans having differert postions j alongthe net-
work chain(j =1,..,n+ 1) for the casen =20. The per
ipheral subclains connecthg the junction and non-junc
tion bead(j = 1 and, due to symmety, j =21) showthe
slowest relaxaton. In contrast, the middle subchain
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Co(u();t)

0,0 . . . . . . . .
0,0 0,1 02 03 04

Fig.9. NormalizedautocorrelatiorfunctionsCo (ux(j); t) of dif-
ferent subchain vectors of a network chain (n=20) at times
t> 10. Curvesj = 11 andj = 1 comespondo the middle andpe-
ripheralsubclains,respectively

(j = 11) relaxthe mostrapdly. Therelaxatontimesof the
inner subctain mediatesbetweenthe middle and petiph-
eralsubchins (Fig. 9).

Although we do not considerin this paperthe maao-
scopicvisceelasticchamcteristics(for exanple, dynamic
modulusandviscosty), some remaks concerning relaxa-
tion spectrum marifested in mechaical viscecelastic
relaxaton of a two-dimensonal polymer netwok canbe
made The auto®rrelationfunction C(uy;t) represergthe
sum of exponetial terms exg-t/z] with the identical
weightsequal to 1 for all relaxationtimes of a netwok
(seeEq.(31)). A similar form is alsotypical of the time
dependen relaxaton modulus G(t) (see, for exanple,
ref29). It shouldbe especidly noted that the relaxaton
modulusG(t) is determinedby relaxaton times 7’ = /2
becausethe relaxation spectrumof aveiage squaes of
normal modes {Q? is excited in mechanich relaxa-
tion®4 In turn, the relaxatbn moduls G(t) determines
the relaxationspectrumH(z) (or the distribution function
of relaxation times t in logarithmic scale}®:
G(t) = G(0) [H(r) exp—t/z]dInz. Therefore, using the
expres®n obtainedfor C(u;t) (Eg.(31)) one can esti-
mate appraimately the asymptoic behavior of the
relaxaton spectrum The relaxatbn spectrumH(z) of a
two-dimensionalpolymer netwok is found to behave as
1/y/7 in the region of intrachainrelaxation(at t < zchai)-
This behavia is closeto that of a single Rousechain!® !
At greatertimes corresponihg to the purely interchain
netwok relaxation (t > zchain), the relaxation spectum
H(z) decraseanorerapdly accodingto the 1/r law. The
asymptaic behavio of relaxatbn spectrumestimatedor
thetwo-dimensionalregular netwok is in agreemenwith
resultsobtainedprevicusly in ref.*?

3. Comparisonwith a coarse-grainednetwork
model

As wasmentianedin Part1 of this seried! theinterchan
collective relaxaton of a two-dimensionalnetwok may
be descibed by a simplified coarse-gained netwok
modelin which the small-scaé intrachan motionsarenot
taken into corsideratiol. A comparson betweenlong-
time relaxationpropertiesof the coarsegrainednetwok
model and the netwok corsisting of multisegmental
Gaussiarchainsis of specal importane becawse of the
simplicity of the coase-graired model of a two-dimen-
sionalnetwoik.

If the motionson sufficiently large scalesare consid-
ered,the sds of relaxationtimes of both networkmodels
should correspondto the long-time collective relaxation
only. For large-scée motions (6., < n) the setof relaxa-
tion timesobtainedfor the coarse-graird networkmodel
(seeEq. (26)in refl) mayberewrittenas

1(0) = 8ryin(1/6°) (37)

where tmin = ¢/8K is the minimum relaxatbn time of a
simplified netwak model, and 6% = (6,)? + (6,)? is the
squareof interchain wavevecta 6. The comrespondhg set
of relaxation times 7, Of a netwok of multisegnental
chainsaredeternined for large-scalenetwok motions by
Eq.(8). The relaxation times of a two-dimensionalnet-
work consising of multissgmental Gauwssian chains
(Eq. (8)) haveto be equalto thoseof simplified coase-
grained netwok (Eq. (37)) in the regon of large-sale
collective motions Therefore the chamcteristictimes of
both netwak modelsshouldbe relatedin the following
way:

Tmin = (N+ 1)°70 (38)

Then the relationsbetweenparameters(elasticity and
friction constantspf both dynamic modelsof a netwok
may be obtained. The elastidgty constat K of a spring
betweenneighbaing junctions of a coarse-graied net-
work model correspndsto the elasticity consant of the
multisegnental chain as a whole. The multisegnental
Gaussian chain between netwok junctions contans
(n+ 1) subclains acting as springswith elasticty corn
stantsKy, i.e.we have

K =Ko/(nN+1) (39
With the useof Eq. (38) and(39), the relation between

friction constants andg, maybeobtained

¢=2(n+ 1) (40

Thus, the friction constaat of a junction of coarse
grainednetwork model shouldbe the sumof the friction
constantof a junction of netwok of multissgmental
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Gaussiarchains2g, (seeEq. (9) of Part1 of this saied)
andthe friction consant4(n/2)¢, of halvesof four multi-
segmentathairs directly attachedo a given junction of
two-dimensionalpolymernetwoik.

It is alsointerestingto comparethe relaxaton proper
ties of junctions of a two-dimensioral polymer netwok
consistingof multisegnental Gaussiarchainswith those
of a simplified coarse-graiedmodelof a netwok. Using
the normd modetransbrmation(seekqg. (28) of Part1 of
this serie§!) we obtainfor the meansquaredisdacement
of ajunction of coarsegrainednetwoik model

ke T 1
KON
1 — exp[—t/7(0)]

41
% ,Z 2(2 — cos By — cos 6) (43)
3£(00)

AXP(t) = AXE(t) +

wherethe relaxationtimes r(@) andthe interchan wave
vectorf = (01,0,) aregiven by Eqg.(26) and (7) of Part1

of this serie8!, respctively. The disgacementof the X

projectionof the centerof massof a coasse-graired net-
work modelAXZ(t) is givenby Eq. (5) with thetotal fric-

tion consant ¢yer of a network equalto N2c. At times
smalle than the minimum relaxation time 7., of a
coarse-graiednetwak model, the mean-sgaredisplace-
mentof a junction AX3(t) with respet to centerof mass
of anetwok beharesas:

keT 1 t
2 =
AX(t) = = —

(42)

At timest > i, the quantity AX?(t) increass accod-
ing to logarithmic law for infinitely large netwoks

) n? ot
n| —
4 Tmin

A comparison of the mean-squar displacenents of
network junctions of a coarse-graied network model
(Eq.(43) and a netwok of multisegnental chains
(Eq. (12)) with the useof therelaion betweertheir char
acterigic times(Eq. (38)) shows thatthe dynamt behav-
ior of both netwok models at sufficiently long times
t > tmin areequivalen (Fig. 10).

With the useof normd modetransbrmation (Eq. (28)
in ref), onecanalsoobtainthe exactanalytical expres-
sion for the autocorrehtion function of the end-teend
chainvecta betweenneighboring junctionsof a coarse-
grainednetwok model

kT 1,
K 2n

AX(t) = (43)

(44)

The equilibrium value of the meansquareof the end-
to-end distancebetweenneighbaing junctions C(hy; 0)
=¢{h?)¢ of asimplified netwok modelis given by

0,6 -

0.4

Cyhgt), AX(t)/<h’™>

0,2 4

0,0

Fig.10. Reduced mean-guare displacementof a junction
AXZ(t) /<h2) andnormalizedautocorreléion function Co (hy; t) of
the end-to-encchainvectorbetwesn neighboringjunctionsfor a
squarenetwolk consistingof multisegmental Gaussianchains
(lines with solid circles (o)) andfor a simplified coarse-graied
networkmodel(lineswith opencircles(o)). In thiscasen = 20

1 kT
e = —=———
M des > K

At short times (t < tmin) the autocorrehtion function

C(hy;t) hasthe behavior

(45)

ke T 1 t
K 4 Tmin

C(hgt) = <h)2<>ce - (46)
At greatertimes(t > min) the quantityC(hy;t) deceases
as

—_ kBT 1 Tmin
ohat) = S ()

The substtution of Eq.(38) into Eq.(47) shows that
the long-time tails of auto®rrelationfunctionsC(hy;t) of
a coarse-graiad networkmodelanda netwok conskting
of multisegmertal Gawssianchairs (Eq. (19)) arecomple-
tely equvalent(Fig. 10).

Thus, one can corclude that the simplified coarse
grained netwok model providesa good fit to the local
relaxationpropertiesof netwak junctionsattimesgreater
than the minimum relaxation time of this simplified
model (Fig. 10). Note thatin the limiting case(n = 0) of
two-dimengonal network consising of multisegnental
Gaussianchairs, which correspondto the coase-graired
netwak model,the setof relaxatontimes(Eq. (6) of Part
1 of this series™) andthe consideredlynamicchamacteris
tics of junctions (Eg. (4) and(15)) areexacty equivalen
to thoseof the simplified netwok model (Eg. (26) of Part
1 of this seried! Eq. (41) and(44)). Moreo\er, the equili-
brium value of the meansquareof the end-teend dis-
tane betweenneighbaing junctions ¢h?)c¢ of a coarse-

(47)
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grainednetwok model (Eq. (45)) is equal to thatof a net-
work of multisegnentalchains(Eq. (16)) if the relation-
ship betweerelasticity constantf both networkmodels
(Eq.(39)) is takeninto account.This fact hasa simple
physical meaning and confirms the theay presented
Thus,thereis a completeagreemenbetweerthe netwoik
consising of multisegmertal Gaussin chans and the
simplified coarse-gainedmodelof a networkat a proper
relationdip betweenthe parametes of these dynamic
models. Hence, the possilility of using the simplified
coarse-gained network model to describethe long-time
dynamt behavior of a two-dimensioral netwok is
demonsgtated.

4. Comparisonwith athree-dimensional
polymer network

A comparisn betweenlocd dynamic charcteristicsof
two- andthree-dinensionalpolymer netwoks is of spe-
cial interestbecausehe effects relatedto the connecivity
of polymer chairs into an unified netwok structureare
expeced to be marifested in relaxaton of two-dimen-
sional netwokks in a weake way as comparedto the
three-dinensionalcase.The local dynamt characteistics
of a threedimensonal cubic netwok havebeenconsid-
ered previausly by the authorsin ref® The intrachan
wave vector y, deternining the set of relaxation times
hasthe similar form for two- andthree-dinensioal net-
works. It contans the complicaed branchy, correspnd-
ing to both the intra- and interchain relaxationprocesses
andthe purely intrachain branchy, correspndingto the
relaxaton of a polymer chainwith fixed ends.The latter
branch y, is doubly degeneated in the caseof three-
dimensimal polymernetwaks® As a result,the normal
modesof a cubic netwok have the more conplicated
structure namdy, they containthreedifferentsetsof nor
mal mode§. The phaseshift § betweendisplacenentsof
neighbaing cells of the netwok with a two-dimensonal
connectvity is determinedby two indepen@nt conpo-
nentsd; and 6, in contastto the threedimensimal net-
work systemin which thereis the threecomporentinter-
chainwavevecta.®

The meansquaredisplacenents of junctions of two-
and threedimensonal polymer networkshave the same
behaviorat sufiiciently shorttimesup to arelaxationtime
Tehain Of @ Chainbetweemeighboringjunctions becasein
this time rangeAX?(t) is mostly goverred by small-scale
intrachain mations. The consderabledifferencebetween
netwoks with different dimensiaality of chain connec-
tivity appearsn the region wherethe interchain collec-
tive relaxaton procesesprovidethe main contibution to
the mean-sqgaredisplacenentsof netwok junctions,i. e.
at times t > tchan. It has been shown® that the mean
squaredisplacenent AX2(t) of a junction of a cubic net-
work at long timest > 7cnain behavesas const— \/7chain/t

20

2 2
AX () /<u >

T T T T T T T T T
0 20 40 60 80 100

t/t

chain

Fig.11. Reduced mean-guare displacemat of a junction
AXZ(t) /<u2> of two-dimensonal (line with solid square (m)) and
three-dimesional (line with open squares(z)) polymer net-
works.In this casen = 20

andtends to the finite limiting value evenin the caseof

aninfinite large network(Fig. 11). In cortrastto the cubic

network,the meansquaredisplacenentof a junction of a

squarenetwok with respect to the center of massat

t > Tehain iINCreasesas IN(t/zenai) and hasno finite limit in

the caseof infinite large netwok (Fig. 11). This increase
in mear-squae displacenent at long timesis completdy

determinedby interchain mations of a network. There-

fore, the ratio of inter- and intrachaincontributions also
increasewith time (Fig. 2). In contrast,in the caseof the

cubic netwak, the contribufon of interchainmations to

the limiting value AX3(t)(t— o) is about six times
greaterthanthat of intrachain motions and remainscon

stantwith time In the caseof a two-dimensonal net-

work of finite size, the mean-squar displacenent of a

junction reaches the finite limiting value that increases
according to logarithmic law with the netwak size.lt is

also in contrastto the three-dinensional network in

whichthelimiting value of AX?(t) doesnot depend onthe

size of the netwok asa whol€e”. Similar conclusims can
be also mace with respet to the meansquaredisplace-
ments of nonjunction beadsof two- and three-dinen-

sionalnetwoks.

The autacorrelationfunctionsC(h; t) of the end-teend
chainvectorbetweemeighbaing junctionsof squareand
cubic netwaks havethe samebehavior at timest < zchain,
i.e.in theregionwherethe time dependece of C(h;t) is
mostly deternined by intrachain motions (Fig. 12). At
greatertimes the interchain collective motions provide
the main cortribution to the time dependece of C(hy; 1),
and the autccorrelation functions of two- and three-
dimensimal polymer networkbeghn to differ. It hasbeen
shown for cubic netwoks® that C(h;t) decreasesat
t> Tenan @S (tenain/t)®? The autocorrehtion function
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Fig.12. Normalized autocarelation function Cy(hy;t) of the
end-to-end chain vector between neighbomg junctions for
square(line with solid squares(m)) and cubic (line with open
squaregn)) polymernetworks(n = 20)

C(hg;t) of a two-dimensionalnetwok behavesas (tchain/

t), i.e. decreaesmore slowy at long timesascompaed
to a cubic netwok (Fig. 12). This correspona to the dif-

ferent behaviorof the relaxaton spectrumH(z) of two-

and three-dinensiaal netwoks in the regon of inter

chain collective relaxaton (> tcha): H(z) ~t for

squarepolymer netwoks andH(z) ~ %2 for culic ones.
A similar differenceis manifestedin the consideréion of
autocorrehtion functions C(uy;t) of subclain vecirs.
However this differencebetweensquareand cubic net-
works is prectically indistinguishabé becauset appeas
in the time behaviorof C(uy;t) whenthis autocorrehition
function decreasge consderably and becomes abaut
(n + 1) times smaller than the equiibrium value of the
meansquareof a subclain vector{uz).

5. Conclusion

To sumup, one can say that the local relaxationproper
ties of the regularpolymer netwok havinga two-dimen-
sionalconnecivity is very closeto that of uncrcss-linked
polymersystens attimessmalker thantherelaxaton time
Tenain Of @ Netwolk chain betweencross-links,i. e. in the
region of preferaby intrachain relaxation. Sucha situa
tion takespart alsofor three-dinensiaal netwoiks >34
At greatertimes (t > tchai) COrresponihg to large-sale
collective relaxation, the dynamic behavior of a two-
dimensimal polymer netwok differs consideraly from
that of a three-dimensiaal one. For exanple, the mean

squae displacerentsof netwak elementsin the cas of
infinitely large squarenetwoks do not tendto finite lim-
iting valuein contastto cubic polymernetwoks, andthe
endto-end chain vectas betweenneighboring junctions
of a two-dimensonal netwok relaxes more slowly as
compared with the netwok having threedimensonal
comectivity.® The long-time collective relaxation of a
two-dimengonal netwok may be describedin a goad
appoximation by a simplified netwok model at the
appropriate relationdip betweenelasticity and friction
constantsof simplified anda more realigic netwok mod-
els.

To conclude, the next stepconcernng investigaton of
dynamics of two-dimensonal polymer netwoks is to
comparethe theaetical predictiors obtainedwith resuts
of recen conmputersimulaion of regulartwo-dimensioral
polymer networks!s:16!
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