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As models for inhomogeneous polymer networks, we investigate the Rouse dynamics of regular
lattices built from subunits with arbitrary internal structure. We analyze as an example a
two-dimensional lattice, consisting of small-world networkSWNs. Using analytical and
numerical calculations we study the stretching of such a structure under an external force. We find
that the network shows interesting relaxation features and an unusual behavior in the intermediate
time (frequency domain, which lies in the region between the modes of the SWN subunits and
those of the lattice. This behavior is related to the SWN-density of states, which leads to the
appearance of a “pseudogap” between the highest lattice eigenvalue and the lowest SWN
eigenvalue. ©2001 American Institute of Physic§DOI: 10.1063/1.1395562

I. INTRODUCTION ditional SWN links creatdoops the ensuing GGS are dis-
tinct from the trees (GGS examples are the dendrimers
Polymer networks are a very important class of materi-structures which are devoid of loops.
als. Due to numerous technological applications, understand-  On the other hand we note that the SWRN approach
ing the structural and dynamical properties of polymer netcaptures only part of the story since the long-range structure
works is a problem of long standifg! A very intriguing  of real polymer networks igdistinct from their medium-
challenge is to deduce how the topology of the network afscale structuserather homogeneous. This fact is reflected in
fects its dynamical properti€s:® Because cross-linking of- the appearance of a nonzero value for their equilibrium
ten occurs randomly, real polymer networks are disorderednodulus® A simple way to take into account this large-scale
This fact makes the theoretical treatment of the dynamics ofelatively homogeneous connectivity is to “decorate” the
polymer networks extremely difficult. Up to now the main bonds of a regu|ar |atticgay square or Cub)d)y rep|acing
theoretical approaches have concentrated on model systenife bonds with polymeric segmentsubunits; in this way
such as percolating latticés;on simple topologies, such as  the sites of the lattice become the crosslinks of the network.
Cayley treeg(realizations are dendrimeric molecufés'®* In previous work one has taken the subunits to be Rouse
and on regular lattices with inclusioridecorations'>~1® chains®~8in this paper we let the subunits be SWRR#n
Small-angle neutron scattering experiments have showthis way we are led to networks which have on small scales
that in statistical gels the local density of crosslinks variesg highly-connected, disordered struct(®VRN), and which
widely."**°Moreover, dynamic and static light scattering ex- are on large scales quite regu&r 8 This allows us to study
periments on hydrogéels>® have also revealed highly het- the interplay between ordered and disordered features, as
erogeneous structures. We are thus interested in having nefell as to highlight the connection between topology and
work models which are very inhomogeneous, but whosgjynamics.
dynamical properties are readily accessible. For this we pre- e note that recently the micromanipulation of polymers
fer to work in the framework of generalized Gaussian structas become possible; the procedures consist in using optical
tures(GGS),****which are extensions of the classical Rousetweezers or in applying external fields on specific charged
model?**’ monomers or on magnetic beads*° In this way one can
Recently, a new class of GGS, the so-called small-worldselectively move parts of the network. Here we study the
Rouse networkéSWRNS has emerget SWRNSs are based displacements of a bead on which an external force acts; as

on the small-world network§éSWNs introduced by Watts we proceed to show, this reveals important aspects of the
and StrogatZ? which mimic the properties of social systems; network’s dynamics.

SWNs are built from an underlying ordered lattice, to which

one adds additional bonds between randomly chosen pairs of

points?®*~** SWRNs are the GGS based on SWN, by whichﬁbi%lgSMER NETWORKS UNDER EXTERNAL

the sites of the structure are interpreted as Rouse beads.

SWRNs are of great theoretical interest since they are an We perform our study in the framework of the Rouse
extension of the basic linear Rouse model, in which the admodef®?’ and its GGS-extensioi:>®> The GGS consist of
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beads connected to each other by spriggh elasticity
constantK) and subject to the friction constagt In the
Langevin framework, the position vectg(t) of thelth bead
of the GGS, subject to the external foregt) obeys

dr,(t) Niot
gt tK X Afa(D)=Fi(t)+ (), @

whereA={A,} is the connectivity matrix of the GG&ee
Refs. 10 and 24 for detajls{w(t) is the thermal noiséhere
assumed to be Gaussian, with zero mean-vakaed N,y is

the total number of elementbeads in the system consid-
ered. The linear system of difference-differential equations
Eq. (1) can be completely solved through the diagonalization
of the matrixA (see, e.g., Ref. 10 a procedure which in-
volves in general determining both the eigenvalues and the
eigenfunctions ofA. For simplicity we focus here only on
the stretchingextension of the GGS under a constant exter-
nal forceF(t)=F (t), switched on at=0 and acting only  FIG. 1. Two-dimensional regular lattice consisting of subunits between lat-
on a single bead, say thth, in they-direction. As shown in tice junctions. The subunits here are small-world Rouse netwsdes mag-
Refs. 10 and 28, the displacement of the bead along th@fymg glasg and a Bravais unit cell is indicated by dashed lines.
y-direction, Y(t), reads after averaging both over the fluctu-

ating forcesw,(t) and over all the beads of the GGS,

FTO 1 Nt q_ exp —\, (t/ro)) .Returnlng tq our general case herg, we focus '(mnpo-
Y(t)= (2) logically) two-dimensional square lattice of vertices con-
gNmf L N Ai nected by subunits containingbeads eacksee Fig. 1L We

This expression is very simple, it involvesly the eigenval- ~denote the elementary cell of our lattice by a two-component
ues\; (but not the eigenvectorsf the connectivity matrix index Q=(a,B); « and g range froml to N. Here such a
A. We thus prefer to present our results Concerning regu|a¢e” contains a vertex and 2 subunits, i.e., it consists of

lattices decorated with SWRN in terms of ttguite visuaJ ~ =2n+1 beads, which we nzumber throughl<j=s. Our
Y (t)-functions, rather than plotting theather abstragtden- ~ network then consists o§N° beads, numbered ag,(2)
sities p(\) of eigenvalues. Now the first term in E(®) cor-  =(j,«,6). In this way we have in Eq(1),

responds to the displacemenigy,(t) of the center of mass Niot

(CM) of the network as a yvhole. The sum in the seconq term 2 Al m(t) = 2 > AjgiarTian(t)

is to be taken over all eigenvalues of the system with the i=1 g

exception of the zero-eigenvalue; =0, and it corresponds s

to the stretching of the GGS. As we show below, the problem :21 Ajaialialt)

of determining the eigenvalueg of a regular lattice deco-
rated with identical subunits can be reduced to calculating

thg eigenvalues of.a related problem, involving only the sub- +2 > AjgiarTian(t), (3)
unit and phase shifts due to the lattice. =1 o
Q"+0

wherel—(j,Q) and m— (i,Q"). Due to obvious symme-
Il. REGULAR LATTICE CONSISTING OF SUBUNITS tries, by setting B('”"—AJQ,Q and, with Q' =Q-Q",

(ext) ’ (ext) "
In this section we develop a general approach to treat B (2)=B; (2= Q) =Ajaiqr in Eq. (3) leads to

dynamics of a GGS, consisting of a regular lattice whose = Nt

. . X . . . (|nt)
vertices are connected by identical subunitgadffirsy arbi- E Al m(t) = 2 Bji "ria(t)
trary topology. This regularity allows u®ased on previous
works®~18 to simplify the problem using Floquet's theorem
(whose special case in solid state physics is Bloch’s +E 2 BIPUQ )rig-a(b). (4)
theoremt'=*3. In Refs. 15—18 the relaxation behavior of net-
works built out of Rouse chain subunits was determined anan Eq. (4) the matan('m)—{B('”t)} is the connectivity ma-
lytically. As it was shown'>~*8for Rouse-chain subunits the trix inside the cell of s beads whereas the matrix
relaxation spectrum displays two different, characteristic reB®9(Q") {B(eX‘)(Q’)} gives the intercell connections.
gions, corresponding to small-scdietrachain) and to large- The nonzero eIements of the matnc&ﬁxo(ﬁ’) are equal to
scale(interchain motion. The intrachain part of the spectrum (—1), wherel is the total number of connections between
reproduces that of single Rouse chains closely; furthermorehe bead of a cellQ2 and the bead of a cellQ2"+# Q. In our
on scales larger than the subunit size, the network showspecial situation the sum ové€l’ in Eg. (4) runs only over
almost pure lattice modés-*8 the nearest-neighboring cells. In the 2D square network con-
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sidered here a given celd=(«,B) is connected to the four Our approach can be easily generalized to other lattice types
neighboring cells: ¢—1,8), (a+1,8), («,8—1), and and to higher dimensions. Given this remark, we now pro-
(a,B+1), so thatQ’ €{(1,0),(-1,0),(0,1),(0-1)}. ceed with our study based on E() and focus on small-

As before, we are looking for the eigenvalues of theworld Rouse network6§SWRNS9 as lattice subunits.
A-matrix. Now, due to the symmetry inherent in Ed), the
diagonalization of Eq(1) simplifies. In fact one may proceed

very formally; here, however, since we want to show quali-IV' RELAXATION OF A 2D REGULAR LATTICE BUILT

. . L -FROM SWRN
tative features only, we simply use periodic boundary condi-
tions for our GGS(the Born—von Keman situation of solid First of all, we recall some important properties of small-
state physicsand seek the solutions of E¢L) combined  world networks(SWNSs. A SWN is obtained by connecting
with Eg. (4) in the form, sites of a regular lattice randomly through additional links
(see Refs. 28—35Thus SWNs are intermediate between
er(t)Erjaﬁ(t)=kEk C; exfi(kya+kyB)] regular lattices and random graphis® On the one hand, a
1:%2 SWN has well-defined local clusters, provided by the under-
X exp( — N (K)t/ ) (5) lying regular I_a_ttice. Qn the other hand, aIreao!y_a small
' ' ' o amount of additional links strongly reduces the minimal dis-
(herei denotes the imaginary uhjtwith tances between the lattice points. One intriguing property
2 of SWNs built from linear chains consists in the appearance
7Tm1 27Tm2 « o .
=N and k,= N (6) of a so-called “pseudogap” in the density of stateg)),

which goes as

where the integersn; andm, range from 0 to N—1), 7 CONS
= {/K is a characteristic relaxation time, and fgare con- p(M)~\"Y2exp — F’z_j 9
stants.

The symmetry of Eqs(4)—(6) is very reminiscent of for small\’s. Equation(9) means that the probability to find
solid state physics, but should not be taken literally, sinceeigenvalues of the SWN very close 10=0 is extremely
only topological(connectivity features enter here. Equation small.

(4) under periodic boundary conditions is invariant under  Here we take such 1D SWRN to be our subunits and we
shifts in the indices(). In the polymeric framework this is study the stretching of a 2D lattice composed of such sub-
not necessarily related to a translational invariance in realnits; see Fig. 1. We follow the SWRN construction of Ref.
space, given that our network can take a very tortuous ged@8, with the exception that we start from a linear Rouse
metrical shape. In the same spirit, in solid state phykics chain, but not from a ring: The initial linear Rouse chain
=(ky,k,) is (apart from a constant with dimension of an consists ofn beads connected by elastic sprifg$’ Then
inverse lengththe two-component wave vector; for us here we connect{by means of springswith probability g/n each

k simply counts the eigenvaluésiodes. bead of the chain in a random way to some other bead. In

The exponential term in Eq5) gives the phase shift this way beads distant from each other along the macromo-
between lattice cellsy (k) are the different eigenvalues, to lecular backbone may gédue to the additional bongslose
be determined as functions &f Inserting Eqs(4) and (5) in space. Finally, we insert these SWRNs as subunits into a
into Eq. (1) and using the symmetries mentioned above2D square lattice.

leads to The numerical procedure is as follows: We use as 2D
s lattice aN X N square, withN= 20, and take for each lattice
ANK)C: = B. (K)C. . 7 realization identical SWRN subunits consisting m)if=20_0_
(k)G Z’l n(k)G @ beads. The SWRN then depends @rand on the specific

realization of the SWN. In this way the matri is known;
however we need, according to the previous section, only to
determine the correspondirigj;(k); see Eq.(8), and their
eigenvalues for differenk. Using standard routines for di-

HereB={B;i(k)} can be viewed as a new connectivity ma-
trix of an elementary cell,

Bji(k):BJ(iint)+2 B{P(Q")exd —ikQ']. (8)  agonalization of symmetric matricéswe find s=(2n+1)
@ eigenvalues for eack.
In Eq. (8), Bji(k) now includes all information concerning We are now ready to calculate the displacem¥é(t),

the topology inside each cell and the way in which the cellshased on Eq(2), and we perform it for several situations.
of the lattice are connected to each other. Thus, based on EHowever, to get an idea of how differences in the SWRN
(7), the problem of obtaining the eigenvalues of therealizations influence the results we start to calculate
A-matrix, which is a §N?°x sN?)-matrix, is reduced to the for isolated SWRN(not yet embedded in the latticeWe
problem of determining only the eigenvaluesN different  focus ongq=0.5 and consider 10 different realizations of the
(sx s)-matrices, evaluated for thd? values ofk, given in ~ SWRN. Then we use the two extrem¥é(t) plots to deter-
Eq. (6). Note that the derivation of Ed7) is very general mine the “worst” SWRN realizations. These are then used as
and holds for arbitrary topological structures of the subunitsubunits of the 2D lattice, for which we again evalu#te).
between the lattice vertices. Also the 2D square lattice con- In Fig. 2 we plot in double logarithmic scales the re-
sidered here is only a particular example of a regular latticeduced(dimensionlessdisplacement™ (t) =Y(t){/F 7o as a
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FIG. 2. The reduced average displacemeh(t) ploted in double logarith- ~ FIG. 3. The dimensionless displaceméfit(t) — Ygy(t) vs the reduced
mic scales vs the reduced tirer,. Shown are results for the two extreme time t/ 7, in double logarithmic scales for several GGS. The networks are
realizations(from ten for SWRN with n=200 andq=0.5; see text for  built from SWRN-subunits where the parametgris 0.5 (circles, 0.1
details. The dashed lines give the situation for the individual SWRd (squares and 0.05(triangles. The dashed lines exhibit the spread given by
embedded in the lattige whereas the solid lines correspond to the full the extreme cases; see text for details.

network (2D lattice with SWRN-subunijs

that these two SWRN subunits have different rigidity. Note
function of the reduced time/r, for these two “worst” from Fig. 2 that the spread between the two solid curves
cases. The dashed lines in Fig. 2 giv&(t) for the isolated is larger in the domain of the lattice modes than in the
SWRNs and the solid lines thé* (t) corresponding to the isolated SWRN-domain(note the logarithmic scalgs
full networks. As is evident, the differences between thethrough the embedding into the lattice such differences are
curves of the extremal cases are rather small and the shapeshanced>~*®
of the curves are very similar for the two realizations. More-  In Fig. 3 we plot the “stretch™® Y* () = YEu(t) of the
over, the curves foiv*(t) for isolated SWRNs reproduce GGS considered here for the two “worst” cases out of 10
very closely the results obtained in Ref. 28. The curves corSWRN realizations, while we varg from 0.05 to 0.5. With
responding to the full network&GGS clearly show the ex- decreasingj the curves become smoother, but the spread due
istence of several domains: these are related to the motion ¢ different SWRN realizations increases. This finding re-
single beads, to the motion of individual SWRN, to an inter-flects the growing importance of fluctuations for small
mediate domain, and to the dynamics of the underlying latFurthermore, since with decreasitg a SWRN becomes
tice, followed by the motion of the whole network. As usual, more flexible, the global network relaxes more slowly, so
the very short-timevery high-frequencydynamic behavior that the stretch increases.
of the network is determined by the motion of single beads To gain a better understanding of the dynamic processes
which do not yet “feel” the connectivity of the GGS. The going on in the network we plot in Fig. 4 for one specific
very long-time (very low-frequency dynamics is given by SWRN realization withq=0.8 the average bead displace-
the displacement of the GGS as a whol¥cy(t) mentY*(t) for the particular SWRN, for the same SWRN
=Ft/{N?s. The plots in Fig. 2 make it possible to differen- but with fixed end point¢clamped, and for the whole net-
tiate clearly the purely SWRN-dynami¢dashed lingsfrom  work (2D lattice with SWRN subunijs Parallel to it we also
the dynamics of the networks of which they are subunitsshow the stretchy* (t) —Yg,(t) of the free SWRN. This
(solid lineg; the dashed lines show at longer times the driftallows us to sort out the different dynamic processes: Thus,
motion of individual SWRN. Due to the fact that, the after an initial time in which we see the individual motion of
number of beads in SWRN, is the same in both realizationshe beads, there follows a regime corresponding to the inter-
these curves merge at largge The same holds true for the nal relaxation of SWRN, roughly up to times of about
full network dynamics, whose curves merge at extremely/107,. After this domain ends, the individual SWRN do not
long times. Also very clear to see from Fig. 2 is that theyet feel the 2D-lattice structure, fact giving rise to a “quasi-
spread in the network’¥™ (t)-curves can be directly attrib- plateau” behavior. The existence of this domain is related to
uted to the individual SWRN-realizations underlying the par-the previously discussed “pseudogap” in eigenvalues, only
ticular GGS. Now the spread in the individual SWRN’s that now the “pseudogap” is between the minimal nonvan-
Y*(t)-curves is due mainly to the difference in the numberishing SWRN eigenvalue and the maximal eigenvalue of the
of additional links introduced in each realization of the 2D lattice modes. In this regime the GGS dynamics lies be-
SWRN (remember that] fixes only theiraveragenumbej.  tween that of the SWRN with free and frozen Gllven that
For Fig. 2 we counted the additional links of the SWRN through embedding the CM-displacement gets hindered
involved and found that the tofbottom curves correspond i.e., it tends to a flatter form. We note that the “pseudogap”
to SWRN with 89(108) additional links; it is clear therefore situation renders the network dynamics hesbere the sub-
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the SWRN density of states. Related effects are also mirrored
in the mechanical and dielectrical relaxation forms, whose
detailed study we defer to a later publication.

On a cautionary note, we would like to stress that GGSs
reflect the dynamics of polymer systems which are not very
far from equilibrium; they cannot be used in treating nonlin-
ear processes. Furthermore, a more realistic treatment must
include excluded volume aspects, which lead to the problem
of the role of entanglements, to be treated using tube-model
ideas; see Ref. 46 for recent calculations. In the present work
we wanted to stress the role of the local inhomogeneities, for
which GGSs(being extensions of the Rouse modeffer a
relatively easy, first-order access; nevertheless they also al-
> 5 4 low us to see interesting dypamical features, sgch as the ones

log(t/ro) related to the pseudogaps in the SWRN density of states.

log(Y*(1))

_1 L 1 L 1 L 1 L 1 L 1 L 1 L 1

FIG. 4. The dimensionless displacemafit(t) vs the reduced tim& 7, in
double logarithmic scales fay=0.8. Displayed are: a single, free SWRN

(long dashes the same, but with fixed endshort dashes and the corre-
sponding, 2D-decorated GGSolid line). The dotted—dashed line corre- The authors aCknOW|edge the Support of the Alexander

Sponds o the stretclf* (t) — Y, (t) of the same SWRN. von Humboldt Foundation, of the DFG, and of the Fonds der
Chemischen Industrie.
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