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Relaxation of disordered polymer networks: Regular lattice
made up of small-world Rouse networks
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As models for inhomogeneous polymer networks, we investigate the Rouse dynamics of regular
lattices built from subunits with arbitrary internal structure. We analyze as an example a
two-dimensional lattice, consisting of small-world networks~SWNs!. Using analytical and
numerical calculations we study the stretching of such a structure under an external force. We find
that the network shows interesting relaxation features and an unusual behavior in the intermediate
time ~frequency! domain, which lies in the region between the modes of the SWN subunits and
those of the lattice. This behavior is related to the SWN-density of states, which leads to the
appearance of a ‘‘pseudogap’’ between the highest lattice eigenvalue and the lowest SWN
eigenvalue. ©2001 American Institute of Physics.@DOI: 10.1063/1.1395562#
r
n
e

a
-
re
s
in
e
s

ow
ie
x-
t-
n
s

pr
uc
se

rl

s;
ch
rs
ch
a
a

ad

-

ch
ture

in
um
le
e

rk.
use

les

, as
nd

rs
tical
ed

the
; as
the

se
I. INTRODUCTION

Polymer networks are a very important class of mate
als. Due to numerous technological applications, understa
ing the structural and dynamical properties of polymer n
works is a problem of long standing.1–7 A very intriguing
challenge is to deduce how the topology of the network
fects its dynamical properties.8–10 Because cross-linking of
ten occurs randomly, real polymer networks are disorde
This fact makes the theoretical treatment of the dynamic
polymer networks extremely difficult. Up to now the ma
theoretical approaches have concentrated on model syst
such as percolating lattices,11,12on simple topologies, such a
Cayley trees~realizations are dendrimeric molecules!10,13,14

and on regular lattices with inclusions~decorations!.15–18

Small-angle neutron scattering experiments have sh
that in statistical gels the local density of crosslinks var
widely.19,20Moreover, dynamic and static light scattering e
periments on hydrogels21–23 have also revealed highly he
erogeneous structures. We are thus interested in having
work models which are very inhomogeneous, but who
dynamical properties are readily accessible. For this we
fer to work in the framework of generalized Gaussian str
tures~GGS!,24,25which are extensions of the classical Rou
model.26,27

Recently, a new class of GGS, the so-called small-wo
Rouse networks~SWRNs! has emerged.28 SWRNs are based
on the small-world networks~SWNs! introduced by Watts
and Strogatz,29 which mimic the properties of social system
SWNs are built from an underlying ordered lattice, to whi
one adds additional bonds between randomly chosen pai
points.29–35 SWRNs are the GGS based on SWN, by whi
the sites of the structure are interpreted as Rouse be
SWRNs are of great theoretical interest since they are
extension of the basic linear Rouse model, in which the
4920021-9606/2001/115(10)/4924/6/$18.00
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ditional SWN links createloops; the ensuing GGS are dis
tinct from the trees ~GGS examples are the dendrimers!,
structures which are devoid of loops.

On the other hand we note that the SWRN approa
captures only part of the story since the long-range struc
of real polymer networks is~distinct from their medium-
scale structure! rather homogeneous. This fact is reflected
the appearance of a nonzero value for their equilibri
modulus.36 A simple way to take into account this large-sca
relatively homogeneous connectivity is to ‘‘decorate’’ th
bonds of a regular lattice~say square or cubic! by replacing
the bonds with polymeric segments~subunits!; in this way
the sites of the lattice become the crosslinks of the netwo

In previous work one has taken the subunits to be Ro
chains;15–18in this paper we let the subunits be SWRNs.28 In
this way we are led to networks which have on small sca
a highly-connected, disordered structure~SWRN!, and which
are on large scales quite regular.15–18This allows us to study
the interplay between ordered and disordered features
well as to highlight the connection between topology a
dynamics.

We note that recently the micromanipulation of polyme
has become possible; the procedures consist in using op
tweezers or in applying external fields on specific charg
monomers or on magnetic beads.37–40 In this way one can
selectively move parts of the network. Here we study
displacements of a bead on which an external force acts
we proceed to show, this reveals important aspects of
network’s dynamics.

II. POLYMER NETWORKS UNDER EXTERNAL
FORCES

We perform our study in the framework of the Rou
model26,27 and its GGS-extension.24,25 The GGS consist of
4 © 2001 American Institute of Physics
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beads connected to each other by springs~with elasticity
constantK! and subject to the friction constantz. In the
Langevin framework, the position vectorr l(t) of the l th bead
of the GGS, subject to the external forceFl(t) obeys

z
dr l~ t !

dt
1K (

m51

Ntot

Almrm~ t !5Fl~ t !1zwl~ t !, ~1!

whereA5$Alm% is the connectivity matrix of the GGS~see
Refs. 10 and 24 for details!, zwl(t) is the thermal noise~here
assumed to be Gaussian, with zero mean-value!, andNtot is
the total number of elements~beads! in the system consid
ered. The linear system of difference-differential equatio
Eq. ~1! can be completely solved through the diagonalizat
of the matrixA ~see, e.g., Ref. 10!, a procedure which in-
volves in general determining both the eigenvalues and
eigenfunctions ofA. For simplicity we focus here only on
the stretching~extension! of the GGS under a constant exte
nal forceF(t)5Fu(t), switched on att50 and acting only
on a single bead, say thel th, in they-direction. As shown in
Refs. 10 and 28, the displacement of the bead along
y-direction,Y(t), reads after averaging both over the fluct
ating forceswl(t) and over all the beads of the GGS,

Y~ t !5
F

zNtot
t1

Ft0

z

1

Ntot
(
i 52

Ntot 12exp~2l i~ t/t0!!

l i
. ~2!

This expression is very simple, it involvesonly the eigenval-
uesl i ~but not the eigenvectors! of the connectivity matrix
A. We thus prefer to present our results concerning reg
lattices decorated with SWRN in terms of the~quite visual!
Y(t)-functions, rather than plotting the~rather abstract! den-
sitiesr~l! of eigenvalues. Now the first term in Eq.~2! cor-
responds to the displacementYCM(t) of the center of mass
~CM! of the network as a whole. The sum in the second te
is to be taken over all eigenvalues of the system with
exception of the zero-eigenvalue,l150, and it corresponds
to the stretching of the GGS. As we show below, the probl
of determining the eigenvaluesl i of a regular lattice deco
rated with identical subunits can be reduced to calcula
the eigenvalues of a related problem, involving only the s
unit and phase shifts due to the lattice.

III. REGULAR LATTICE CONSISTING OF SUBUNITS

In this section we develop a general approach to treat
dynamics of a GGS, consisting of a regular lattice who
vertices are connected by identical subunits of~at first! arbi-
trary topology. This regularity allows us~based on previous
works15–18! to simplify the problem using Floquet’s theore
~whose special case in solid state physics is Bloc
theorem41–43!. In Refs. 15–18 the relaxation behavior of ne
works built out of Rouse chain subunits was determined a
lytically. As it was shown,15–18 for Rouse-chain subunits th
relaxation spectrum displays two different, characteristic
gions, corresponding to small-scale~intrachain! and to large-
scale~interchain! motion. The intrachain part of the spectru
reproduces that of single Rouse chains closely; furtherm
on scales larger than the subunit size, the network sh
almost pure lattice modes.15–18
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Returning to our general case here, we focus on a~topo-
logically! two-dimensional square lattice of vertices co
nected by subunits containingn beads each~see Fig. 1!. We
denote the elementary cell of our lattice by a two-compon
index V5(a,b); a andb range from1 to N. Here such a
cell contains a vertex and 2 subunits, i.e., it consists os
52n11 beads, which we number throughj , 1< j <s. Our
network then consists ofsN2 beads, numbered as (j ,V)
[( j ,a,b). In this way we have in Eq.~1!,

(
m51

Ntot

Almrm~ t !5(
i 51

s

(
V9

Aj Vi V9r i V9~ t !

5(
i 51

s

Aj Vi Vr i V~ t !

1(
i 51

s

(
V9

V9ÞV

Aj Vi V9r i V9~ t !, ~3!

where l→( j ,V) and m→( i ,V9). Due to obvious symme-
tries, by setting Bji

(int)[Aj Vi V and, with V85V2V9,
Bji

(ext)(V8)[Bji
(ext)(V2V9)[Aj Vi V9 in Eq. ~3! leads to

(
m51

Ntot

Almrm~ t !5(
i 51

s

Bji
(int)r i V~ t !

1(
i 51

s

(
V8

Bji
(ext)~V8!r i V2V8~ t !. ~4!

In Eq. ~4! the matrixB(int)5$Bji
(int)% is the connectivity ma-

trix inside the cell of s beads, whereas the matri
B(ext)(V8)5$Bji

(ext)(V8)% gives the intercell connections
The nonzero elements of the matricesBji

(ext)(V8) are equal to
(2 l ), where l is the total number of connections betwe
the beadj of a cellV and the beadi of a cellV9ÞV. In our
special situation the sum overV8 in Eq. ~4! runs only over
the nearest-neighboring cells. In the 2D square network c

FIG. 1. Two-dimensional regular lattice consisting of subunits between
tice junctions. The subunits here are small-world Rouse networks~see mag-
nifying glass! and a Bravais unit cell is indicated by dashed lines.
IP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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sidered here a given cellV5(a,b) is connected to the fou
neighboring cells: (a21,b), (a11,b), (a,b21), and
(a,b11), so thatV8P$(1,0),(21,0),(0,1),(0,21)%.

As before, we are looking for the eigenvalues of t
A-matrix. Now, due to the symmetry inherent in Eq.~4!, the
diagonalization of Eq.~1! simplifies. In fact one may procee
very formally; here, however, since we want to show qua
tative features only, we simply use periodic boundary con
tions for our GGS~the Born–von Ka´rmán situation of solid
state physics! and seek the solutions of Eq.~1! combined
with Eq. ~4! in the form,

r j V~ t ![r j ab~ t !5 (
k1 ,k2

Cj exp@ i ~k1a1k2b!#

3exp~2l~k!t/t0! ~5!

~herei denotes the imaginary unit!, with

k15
2pm1

N
and k25

2pm2

N
, ~6!

where the integersm1 and m2 range from 0 to (N21), t0

5z/K is a characteristic relaxation time, and theCj are con-
stants.

The symmetry of Eqs.~4!–~6! is very reminiscent of
solid state physics, but should not be taken literally, sin
only topological~connectivity! features enter here. Equatio
~4! under periodic boundary conditions is invariant und
shifts in the indicesV. In the polymeric framework this is
not necessarily related to a translational invariance in
space, given that our network can take a very tortuous g
metrical shape. In the same spirit, in solid state physick
5(k1 ,k2) is ~apart from a constant with dimension of a
inverse length! the two-component wave vector; for us he
k simply counts the eigenvalues~modes!.

The exponential term in Eq.~5! gives the phase shif
between lattice cells;l(k) are the different eigenvalues, t
be determined as functions ofk. Inserting Eqs.~4! and ~5!
into Eq. ~1! and using the symmetries mentioned abo
leads to

l~k!Cj5(
i 51

s

Bji ~k!Ci . ~7!

HereB5$Bji (k)% can be viewed as a new connectivity m
trix of an elementary cell,

Bji ~k!5Bji
(int)1(

V8
Bji

(ext)~V8!exp@2 ikV8#. ~8!

In Eq. ~8!, Bji (k) now includes all information concernin
the topology inside each cell and the way in which the ce
of the lattice are connected to each other. Thus, based on
~7!, the problem of obtaining the eigenvalues of t
A-matrix, which is a (sN23sN2)-matrix, is reduced to the
problem of determining only the eigenvalues ofN2 different
(s3s)-matrices, evaluated for theN2 values ofk, given in
Eq. ~6!. Note that the derivation of Eq.~7! is very general
and holds for arbitrary topological structures of the subun
between the lattice vertices. Also the 2D square lattice c
sidered here is only a particular example of a regular latt
Downloaded 04 Sep 2001 to 132.230.78.14. Redistribution subject to A
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Our approach can be easily generalized to other lattice ty
and to higher dimensions. Given this remark, we now p
ceed with our study based on Eq.~7! and focus on small-
world Rouse networks~SWRNs! as lattice subunits.

IV. RELAXATION OF A 2D REGULAR LATTICE BUILT
FROM SWRN

First of all, we recall some important properties of sma
world networks~SWNs!. A SWN is obtained by connecting
sites of a regular lattice randomly through additional lin
~see Refs. 28–35!. Thus SWNs are intermediate betwee
regular lattices and random graphs.29,30 On the one hand, a
SWN has well-defined local clusters, provided by the und
lying regular lattice. On the other hand, already a sm
amount of additional links strongly reduces the minimal d
tances between the lattice points. One intriguing proper33

of SWNs built from linear chains consists in the appeara
of a so-called ‘‘pseudogap’’ in the density of states,r~l!,
which goes as

r~l!;l21/2expS 2
const

l1/2 D ~9!

for smalll’s. Equation~9! means that the probability to find
eigenvalues of the SWN very close tol50 is extremely
small.

Here we take such 1D SWRN to be our subunits and
study the stretching of a 2D lattice composed of such s
units; see Fig. 1. We follow the SWRN construction of Re
28, with the exception that we start from a linear Rou
chain, but not from a ring: The initial linear Rouse cha
consists ofn beads connected by elastic springs.26,27 Then
we connect~by means of springs! with probability q/n each
bead of the chain in a random way to some other bead
this way beads distant from each other along the macro
lecular backbone may get~due to the additional bonds! close
in space. Finally, we insert these SWRNs as subunits in
2D square lattice.

The numerical procedure is as follows: We use as
lattice aN3N square, withN520, and take for each lattice
realization identical SWRN subunits consisting ofn5200
beads. The SWRN then depends onq and on the specific
realization of the SWN. In this way the matrixA is known;
however we need, according to the previous section, onl
determine the correspondingBji (k); see Eq.~8!, and their
eigenvalues for differentk. Using standard routines for di
agonalization of symmetric matrices44 we find s5(2n11)
eigenvalues for eachk.

We are now ready to calculate the displacementY(t),
based on Eq.~2!, and we perform it for several situation
However, to get an idea of how differences in the SWR
realizations influence the results we start to calculateY(t)
for isolated SWRN~not yet embedded in the lattice!. We
focus onq50.5 and consider 10 different realizations of th
SWRN. Then we use the two extremalY(t) plots to deter-
mine the ‘‘worst’’ SWRN realizations. These are then used
subunits of the 2D lattice, for which we again evaluateY(t).

In Fig. 2 we plot in double logarithmic scales the r
duced~dimensionless! displacementY* (t)5Y(t)z/Ft0 as a
IP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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function of the reduced timet/t0 for these two ‘‘worst’’
cases. The dashed lines in Fig. 2 giveY* (t) for the isolated
SWRNs and the solid lines theY* (t) corresponding to the
full networks. As is evident, the differences between
curves of the extremal cases are rather small and the sh
of the curves are very similar for the two realizations. Mo
over, the curves forY* (t) for isolated SWRNs reproduc
very closely the results obtained in Ref. 28. The curves c
responding to the full networks~GGS! clearly show the ex-
istence of several domains: these are related to the motio
single beads, to the motion of individual SWRN, to an int
mediate domain, and to the dynamics of the underlying
tice, followed by the motion of the whole network. As usu
the very short-time~very high-frequency! dynamic behavior
of the network is determined by the motion of single bea
which do not yet ‘‘feel’’ the connectivity of the GGS. Th
very long-time~very low-frequency! dynamics is given by
the displacement of the GGS as a whole,YCM(t)
5Ft/zN2s. The plots in Fig. 2 make it possible to differen
tiate clearly the purely SWRN-dynamics~dashed lines! from
the dynamics of the networks of which they are subun
~solid lines!; the dashed lines show at longer times the d
motion of individual SWRN. Due to the fact thatn, the
number of beads in SWRN, is the same in both realizatio
these curves merge at larget. The same holds true for th
full network dynamics, whose curves merge at extrem
long times. Also very clear to see from Fig. 2 is that t
spread in the network’sY* (t)-curves can be directly attrib
uted to the individual SWRN-realizations underlying the p
ticular GGS. Now the spread in the individual SWRN
Y* (t)-curves is due mainly to the difference in the numb
of additional links introduced in each realization of th
SWRN ~remember thatq fixes only theiraveragenumber!.
For Fig. 2 we counted the additional links of the SWR
involved and found that the top~bottom! curves correspond
to SWRN with 89~108! additional links; it is clear therefore

FIG. 2. The reduced average displacementY* (t) ploted in double logarith-
mic scales vs the reduced timet/t0 . Shown are results for the two extrem
realizations~from ten! for SWRN with n5200 andq50.5; see text for
details. The dashed lines give the situation for the individual SWRN~not
embedded in the lattice!, whereas the solid lines correspond to the f
network ~2D lattice with SWRN-subunits!.
Downloaded 04 Sep 2001 to 132.230.78.14. Redistribution subject to A
e
pes
-

r-

of
-
t-
,

s

s
t

s,

y

-

r

that these two SWRN subunits have different rigidity. No
from Fig. 2 that the spread between the two solid curv
is larger in the domain of the lattice modes than in t
isolated SWRN-domain~note the logarithmic scales!;
through the embedding into the lattice such differences
enhanced.15–18

In Fig. 3 we plot the ‘‘stretch’’45 Y* (t)2YCM* (t) of the
GGS considered here for the two ‘‘worst’’ cases out of
SWRN realizations, while we varyq from 0.05 to 0.5. With
decreasingq the curves become smoother, but the spread
to different SWRN realizations increases. This finding
flects the growing importance of fluctuations for smallq.
Furthermore, since with decreasingq a SWRN becomes
more flexible, the global network relaxes more slowly,
that the stretch increases.

To gain a better understanding of the dynamic proces
going on in the network we plot in Fig. 4 for one specifi
SWRN realization withq50.8 the average bead displac
ment Y* (t) for the particular SWRN, for the same SWR
but with fixed end points~clamped!, and for the whole net-
work ~2D lattice with SWRN subunits!. Parallel to it we also
show the stretchY* (t)2YCM* (t) of the free SWRN. This
allows us to sort out the different dynamic processes: Th
after an initial time in which we see the individual motion
the beads, there follows a regime corresponding to the in
nal relaxation of SWRN, roughly up to times of abo
A10t0 . After this domain ends, the individual SWRN do n
yet feel the 2D-lattice structure, fact giving rise to a ‘‘quas
plateau’’ behavior. The existence of this domain is related
the previously discussed ‘‘pseudogap’’ in eigenvalues, o
that now the ‘‘pseudogap’’ is between the minimal nonva
ishing SWRN eigenvalue and the maximal eigenvalue of
2D lattice modes. In this regime the GGS dynamics lies
tween that of the SWRN with free and frozen CM~given that
through embedding the CM-displacement gets hindere!,
i.e., it tends to a flatter form. We note that the ‘‘pseudoga
situation renders the network dynamics here~where the sub-

FIG. 3. The dimensionless displacementY* (t)2YCM* (t) vs the reduced
time t/t0 in double logarithmic scales for several GGS. The networks
built from SWRN-subunits where the parameterq is 0.5 ~circles!, 0.1
~squares!, and 0.05~triangles!. The dashed lines exhibit the spread given
the extreme cases; see text for details.
IP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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units are SWRNs! drastically different from that of system
with Rouse-chain subunits; in that case the curves are q
smooth.17,18 Following this range~in Fig. 4 from times
around 102t0 to around 103t0! there exists an intermediat
regime corresponding to the combined dynamics of
SWRN subunits and of the 2D lattice. NowY* (t) lies be-
tween the situation for the free and for the clamped SWR
but closer to the latter. At longer times there appears a cr
over domain corresponding to the dynamics of the 2D latt
a domain which extends up to the region of the pure C
drift, at which times the whole internal information about t
GGS is lost.

The discussion thus far has centered onY* (t). As re-
lated quantities we mention now the dynamic moduli. Th
the characteristic regimes found here under stretching h
their counterparts in the storage and loss moduli. For
stance, due to the ‘‘pseudogap’’ discussed above, the sto
modulusG8(v) shows a plateau-type behavior in the fr
quency domain which extends from the highest lattice mo
to the lowest modes of the SWRNs.

V. CONCLUSIONS

Our main goal was to understand the role of strong str
tural inhomogeneities on the dynamic properties of mat
als. To this purpose we introduced generalized Gaus
structures~GGS!, which make it possible to combine loca
disorder and mesoscopic order; we obtained the GGS
decorating regular lattices with subunits of arbitrary inter
topology. As examples of such GGS we focused on
stretching of a 2D square lattice built from SWRN subun
We found that the dynamic properties of such networks
very sensitive to disorder and that they differ from tho
found for regular structures built from simple Rou
chains.17,18 Thus for SWRN subunits we found forY* (t) a
plateau-type behavior in the time region lying between
internal SWRN modes and the modes of the lattice. T
behavior is related to the appearance of the ‘‘pseudogap

FIG. 4. The dimensionless displacementY* (t) vs the reduced timet/t0 in
double logarithmic scales forq50.8. Displayed are: a single, free SWR
~long dashes!, the same, but with fixed ends~short dashes!, and the corre-
sponding, 2D-decorated GGS~solid line!. The dotted–dashed line corre
sponds to the stretchY* (t)2YCM* (t) of the same SWRN.
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the SWRN density of states. Related effects are also mirro
in the mechanical and dielectrical relaxation forms, who
detailed study we defer to a later publication.

On a cautionary note, we would like to stress that GG
reflect the dynamics of polymer systems which are not v
far from equilibrium; they cannot be used in treating nonl
ear processes. Furthermore, a more realistic treatment
include excluded volume aspects, which lead to the prob
of the role of entanglements, to be treated using tube-mo
ideas; see Ref. 46 for recent calculations. In the present w
we wanted to stress the role of the local inhomogeneities,
which GGSs~being extensions of the Rouse model! offer a
relatively easy, first-order access; nevertheless they also
low us to see interesting dynamical features, such as the
related to the pseudogaps in the SWRN density of states

ACKNOWLEDGMENTS

The authors acknowledge the support of the Alexan
von Humboldt Foundation, of the DFG, and of the Fonds
Chemischen Industrie.

1L. R. G. Treloar,The Physics of Rubber Elasticity~Clarendon, Oxford,
1975!.

2P. J. Flory, Proc. R. Soc. London, Ser. A351, 351 ~1976!.
3W. W. Graessley, Adv. Polym. Sci.47, 68 ~1982!.
4S. F. Edwards, J. Phys. A7, 318 ~1974!.
5J. E. Mark, Adv. Polym. Sci.44, 1 ~1982!.
6A. J. Stavermann, Adv. Polym. Sci.44, 73 ~1982!.
7Elastomeric Polymer Networks, edited by J. E. Mark and B. Erman
~Prentice-Hall, Englewood Cliffs, NJ, 1992!.

8E. R. Duering, K. Kremer, and G. S. Grest, J. Chem. Phys.101, 8169
~1994!.

9S. Lay, J.-U. Sommer, and A. Blumen, J. Chem. Phys.110, 12173~1999!.
10P. Biswas, R. Kant, and A. Blumen, Macromol. Theory Simul.9, 56

~2000!.
11H. H. Winter and M. Mours, Adv. Polym. Sci.134, 165 ~1997!.
12N. V. Pogodina and H. H. Winter, Macromolecules31, 8164~1998!.
13W. W. Graessley, Macromolecules13, 372 ~1980!.
14A. Kloczkowski, J. E. Mark, and H. L. Frisch, Macromolecules23, 3481

~1990!.
15A. A. Gurtovenko and Yu. Ya. Gotlib, Macromolecules31, 5756~1998!.
16A. A. Gurtovenko and Yu. Ya. Gotlib, Macromolecules33, 6578~2000!.
17Yu. Ya. Gotlib and A. A. Gurtovenko, Macromol. Theory Simul.9, 407

~2000!.
18A. A. Gurtovenko and Yu. Ya. Gotlib, Macromol. Theory Simul.9, 416

~2000!.
19J. Bastide, L. Leibler, and J. Prost, Macromolecules23, 1821~1990!.
20E. Mendes, P. Lindner, M. Buzier, F. Boue´, and J. Bastide, Phys. Rev. Let

66, 1595~1991!.
21K. L. Wun and W. Prins, J. Polym. Sci., Polym. Phys. Ed.12, 533~1974!.
22A. M. Hecht, R. Duplessix, and E. Geissler, Macromolecules18, 2167

~1985!.
23B. Lindemann, U. P. Schro¨der, and W. Oppermann, Macromolecules30,

4073 ~1997!.
24J.-U. Sommer and A. Blumen, J. Phys. A28, 6669~1995!.
25H. Schiessel, Phys. Rev. E57, 5775~1998!.
26P. E. Rouse, J. Chem. Phys.21, 1272~1953!.
27M. Doi and S. F. Edwards,The Theory of Polymer Dynamics~Clarendon,

Oxford, 1986!.
28S. Jespersen, I. M. Sokolov, and A. Blumen, J. Chem. Phys.113, 7652

~2000!.
29D. J. Watts and S. H. Strogatz, Nature~London! 393, 440 ~1998!.
30D. J. Watts,Small Worlds: The Dynamics of Networks Between Order a

Randomness~Princeton University Press, Princeton, 1999!.
31M. E. J. Newman and D. J. Watts, Phys. Rev. E60, 7332~1999!.
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