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ABSTRACT: Based on recent experiments, inhomogeneous polymer networks can be viewed as densely
cross-linked regions embedded in more dilute surroundings. Here we put forward systems that model
such situations, namely regular lattices built from complex subunits. The model takes into account both
the disorder inside the subunits (cross-link agglomerations) and the connectivity between them. Combining
analytical and numerical methods, we propose a general approach for determining the Rouse dynamics
of such systems. Exemplarily, we apply this approach to two-dimensional lattices built from small-world
Rouse networks and evaluate the model’s mechanical and dielectric response to external fields. We find
that the networks show interesting relaxation features and an unusual “plateau-type” behavior in the
intermediate frequency (time) domain, which lies between the modes of the disordered subunits and those
of the regular lattice. This behavior is directly related to the disorder inside the cross-link agglomerations
and may be readily detected through appropriate mechanical and dielectric experiments.

1. Introduction

One of the basic challenges in polymer theory is to
deduce how the topology of polymers affects their
dynamical properties. In this work we focus on polymer
networks as a very important class of complex systems;
in such networks the macromolecules are connected
with each other by means of chemical cross-links.
Because cross-linking often occurs randomly, usually
polymer networks show quite a disordered structure, a
fact which renders their theoretical treatment difficult.
Up to now most theoretical approaches have focused on
networks that are either regularly built or self-similar,
the idea being that both cases allow to use the sym-
metries inherent in the underlying geometry. Examples
for the first case are simple topologies, such as regular
lattices, star polymers, or dendrimers; examples for the
second kind are percolating clusters.

Many real cross-linked polymers do not belong to any
of these classes. The reason for this is quite subtle, and
it may be inherent in the preparation of cross-linked
samples, where different kinetic factors influence the
formation of the networks; such networks may (due to
their durable chemical bonds) retain for a very long time
the memory of their preparation. That one is indeed
confronted with quite complex systems is well-docu-
mented experimentally. Thus, small-angle neutron scat-
tering experiments1,2 have shown that in statistical gels
the local density of cross-links varies widely: The
random arrangement of cross-links in the gel leads to
local regions (clusters), whose cross-link density is much
higher than on the average. Therefore, under contact
with an excess of solvent, the solvent is mainly absorbed
by the regions between the clusters, and the gel swells
heterogeneously.1,2 Moreover, dynamic and static light

scattering experiments on hydrogels have also revealed
highly heterogeneous structures.3-5 As demonstrated in
the recent work of Oppermann and co-workers on
polyacrylamide hydrogels,5 the gel structure can be
visualized as being built from densely cross-linked
clusters (cross-link agglomerations) distributed in sur-
roundings whose cross-link density is lower. That,
indeed, the clusters are themselves interconnected (for
sufficiently dense polymer systems) is reflected in the
nonzero value of the equilibrium modulus of polymer
networks and gels.6 In fact, the networks appear to be
inhomogeneous (stochastic) on small length scales, but
they are rather homogeneous on large length scales.

The problem that we face is to develop models for such
network systems, models which reflect their disordered
structure but which still allow to determine their
dynamical properties in a not-too-intricate fashion. For
this we prefer to work in the framework of generalized
Gaussian structures7,8 (GGS), which are extensions of
the classical Rouse model.9,10 A simple way to take into
account the structural features mentioned above is to
“decorate” a regular lattice (say square or cubic) by
replacing its bonds with subunits (cross-link agglomera-
tions) having complex internal structures. Such an
approach models some of the disorder inherent in
realistic networks; on the other hand, decorating regular
structures with complex subunits allows us to use
methods developed in solid-state physics in the treat-
ment of lattices made up of subunits. We hasten to
notice that polymer networks do not display in general
any translational symmetry. However, translational
symmetry is not required: The idea is that for general-
ized Gaussian structures (GGS) the corresponding Lan-
gevin equations have a topological symmetry math-
ematically very akin to the translational symmetry of
perfectly regular lattices. This fact allows to consider-
ably simplify the problem, since we are then able to
reduce the determination of the normal modes of our
structures to the diagonalization of relatively small
matrices, where the large-scale symmetry is taken into

† Universität Freiburg.
‡ Russian Academy of Sciences.
* To whom correspondence should be addressed. Current ad-

dress: Theoretische Polymerphysik, Universität Freiburg, Her-
mann-Herder-Str. 3, D-79104 Freiburg, Germany.

3288 Macromolecules 2002, 35, 3288-3295

10.1021/ma011851+ CCC: $22.00 © 2002 American Chemical Society
Published on Web 03/15/2002



account through judiciously chosen boundary conditions,
reflected in the appearance of corresponding phase
factors.

The paper is organized as follows. In the next section
we introduce our model for the polymer networks and
gels mentioned, namely regular lattices built from
complex subunits. In section 2 we also discuss the
dynamical features which we are interested in, given
that the usual dynamic experiments measure the me-
chanical and dielectric response of polymer networks to
external fields. Section 3 is devoted to solving the
dynamical problems which arise in this context for
networks built from complex subunits. Exemplarily, in
section 4 we apply our general formalism to disordered
polymer networks using as subunits small-world Rouse
networks (SWRN), which we introduce and discuss. In
fact, SWRNs are quite disordered, a fact which leaves
its mark on the experimental patterns obtained through
mechanical and dielectric relaxation measurements.
Finally, in section 5 we end with a short summary and
conclusions.

2. Mechanical and Dielectric Relaxation of
Generalized Gaussian Structures

To model the gels and networks discussed in the
Introduction, we start from topologically regular lattices;
then we replace the bonds connecting their vertexes
with complex subunits, which may have arbitrary
internal architectures. In this way we take into account
the two basic features of the polymeric gels discussed
above: We can account for the disorder inside the cross-
link agglomerations through the judicious choice of
subunits; the global connectivity of the network (which
on long length scales is quite regular) is given by the
regular lattice. In Figure 1 we display one possible
elementary cell of such a network, where we have, for
simplicity, depicted it as a part of a three-dimensional
network, related to a simple cubic lattice. As will be
evident in the following, one may use other basic
lattices. Furthermore, we take all the subunits to have
the same topological internal structure. In this case,
as we proceed to show, the long-range regularity of
the network allows us to simplify the problem using
Floquet’s theorem (whose special case in solid-state
physics is Bloch’s theorem11-13).

We perform our study in the framework of the Rouse
model9,10 and of its extensions called generalized Gauss-
ian structures7,8 (GGS). A GGS (full network) consists

of beads connected to each other by springs (with
elasticity constant K) and subject to the friction constant
ú, which arises from the interaction with the solvent or
with the effective viscous medium.10 In the Langevin
framework, the position vector Rl(t) of the lth bead of
the network (GGS), subject to the external force Fl(t),
obeys

where A) {Alm} is the connectivity matrix of the GGS
(see refs 7 and 14 for details), úwl(t) is the thermal noise
(here assumed to be Gaussian, with zero mean value),
and Ntot is the total number of elements (beads) in the
system considered. The linear system of difference-
differential equations, eq 1, can be completely solved
through the diagonalization of the matrix A, a procedure
which involves in general determining both the eigen-
values and the eigenfunctions of A. As shown in the next
section, the procedure simplifies for structures akin to
those of Figure 1.

Let us outline now the measurable relaxation quanti-
ties, which we are interested in and which are experi-
mentally accessible. In general, mechanical and dielec-
tric relaxations are well-established techniques in
polymer physics. In typical mechanical experiments one
measures the complex (shear) modulus G*(ω) as re-
sponse to a harmonic strain field. For the structures
considered here (GGS) one has for G′(ω), the real, and
for G′′(ω), the imaginary component of the complex
dynamic modulus G*(ω):10

and

In eqs 2 and 3 ν is the number of polymer segments
(beads) per unit volume, τ0 ) ú/K, and the λi are the
eigenvalues of the connectivity matrix A of the GGS.
In eqs 2 and 3 we have neglected the vanishing
eigenvalue denoted by λ1 ) 0, which corresponds to the
translation of the whole GGS and which may influence
G′′(ω) only in the very close vicinity of ω ) 0. The
components G′(ω) and G′′(ω) are usually called storage
and loss modulus, respectively.6

Now the dynamic modulus G*(ω) is related in the time
domain to the relaxation modulus G(t) (the response of
the stress to a shear jump) through

From eqs 2 and 3 G(t) obeys

Furthermore, the mechanical relaxation of viscoelastic
materials can be alternatively described (apart from
moduli) by means of the relaxation spectrum H(τ) (i.e.,

Figure 1. Three-dimensional cubic lattice built from complex
subunits with arbitrary internal structure. Shown is one
elementary cell of the regular lattice and the internal structure
of one subunit (surrounded by a dashed line).
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the distribution function of relaxation times τ on a
logarithmic scale), which is connected with the relax-
ation modulus G(t) through6

Note that the factor 2 in the exponents of eq 5 (equiva-
lently, in the relaxation times τi ) τ0/2λi) arises from
the second moment of the displacements involved in
computing the stress; see the evaluation of G*(ω) and,
correspondingly, of G(t) in ref 10.

The dielectric relaxation forms are based on the
frequency-dependent complex dielectric susceptibility,
ε*(ω). Now one focuses usually on

where ε0 and ε∞ denote the limiting low- and high-
frequency dielectric constants, respectively. In general,
subjecting polar molecules embedded in nonpolar sol-
vents to an alternating electric field E ) E0 exp(iωt)
leads to the ∆ε*(ω) response:15

when the local fields are not important. In eq 8 the
quantity C0(M;t) is the normalized autocorrelation func-
tion of the total dipole moment M(t) of the system,

We focus here on the dielectric response of GGSs,
which possess dipole moments directed along their
bonds (type A according to Stockmayer’s classifi-
cation).16-18 We assign a longitudinal dipole moment mj
to each bond j of the GGS; the magnitude of each mj is
directly proportional to the length of the jth bond, but
its orientation is arbitrary. Therefore, the total dipole
moment M(t) of the GGS is given by

where Nb is the number of bonds of the GGS, µj ) ljµ is
the dipole moment per unit length, lj ∈{+1, -1} gives
the orientation, and Pj ) Rl - Rm is the vector of the
jth bond between the lth and the mth GGS beads. We
consider here the special situation in which the lj, i.e.,
the orientations of the dipole moments {mj} along the
bonds, are random and uncorrelated. Then one has,
averaged over all possible orientation distributions,

since 〈ljlk〉or ) δjk. The combination of coordinates of GGS
beads involved in the quantity 〈〈M(0) M(t)〉〉or, eq 11, is
directly related to that in the potential energy U({R})
of the GGS, which enters in the Langevin equation:

Using this fact, one can reduce the normalized autocor-
relation function of the total dipole moment C0(M;t) to
the following simple form (see the detailed derivation
in the Appendix):

where Ntot and the λi are as before. Note that the
approach presented here is very similar to that devel-
oped for the dielectric relaxation of regular meshlike
networks built from macromolecules with longitudinal
dipole moments19 as well as to that for the dielectric
relaxation of small-world Rouse networks.20

Inserting now eq 13 in eq 8 leads to the dielectric
susceptibility ∆ε*; expressing it in terms of its real and
imaginary parts, ∆ε* ) ∆ε′ - i∆ε′′, one finds

and

For the model considered here we thus have a straight-
forward correspondence between the mechanical and
dielectric relaxation forms; from eqs 2, 3, 14, and 15 one
sees readily that

and

hold. One may furthermore note that the dielectric
susceptibility, eqs 13-15, is determined by relaxation
times which are twice larger than those appearing in
the expressions of mechanical relaxation, eqs 2, 3, and
5. We like to emphasize that for calculating G(t),
G*(ω), and ∆ε*(ω) we need only the eigenvalues λi (or
the relaxation times τi) of the GGS, but not the corre-
sponding eigenfunctions. In fact, such relaxation char-
acteristics (which are determined by the eigenvalues
only) simplify the solution of the dynamical problems
considered here.

3. Lattices Consisting of Subunits
In this section we consider the dynamics of networks

consisting of a topologically regular lattice, decorated
with subunits (see Figure 1). The simplest realization
for the subunits between lattice vertexes is the standard
linear Rouse chain. In this case the problem can be
solved analytically for regular 2D and 3D lattices.21-24

Basic feature is that for such Rouse chain subunits the
relaxation spectrum H(τ) of the networks, eq 6, displays
two characteristic domains; these correspond to the
small-scale (intrachain) motions and to the large-scale
(interchain) motions of the network.21-24 The intrachain
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part of the spectrum reproduces closely the spectrum
of single Rouse chains and goes as τ-1/2. For longer times
the relaxation spectrum obeys a power law, H(τ) ∼
τ- R, related to an almost pure lattice relaxation. The
exponent R depends on the lattice type considered, R )
d/2, where d is the topological lattice dimension; R
equals 3/2 for 3D cubic21,22 and 1 for 2D square23,24

lattices. Note that based on eq 6, which relates G(t) to
H(τ), the form H(τ) ∼ τ-R leads, by insertion, to G(t) ∼
t-R, with the same value of R. Furthermore, for these
networks the maximal relaxation time of the Rouse
chains between the vertexes and the minimal relaxation
time of the lattice were found to be equal.21-24

We now return to our general case and focus on a
(topologically) three-dimensional cubic lattice whose
vertexes are connected by identical subunits of arbitrary
topology. The elementary cell of the lattice is denoted
by a three-component index Ω ) (R, â, γ) where R, â,
and γ range from 1 to N. Such a cell contains a vertex
and three subunits of n beads each; i.e., it consists of s
) 3n + 1 beads, which we number by the index j ∈
{1...s}. The whole network consists then of sN3 beads,
numbered as (j,Ω) ≡ (j, R, â, γ). We can now simplify
the determination of the eigenvalues of the connectivity
matrix A of our system by making use of its topological
symmetry. With help of the above notations, we rewrite
the elastic term in the Langevin equations of motion
(which is determined through the topology of the
network) in the following way:

where we let l f (j, Ω) and m f (i, Ω′). Because of
obvious symmetries, we may set in eq 18 Bji

(int) ≡ AjΩiΩ

and Bji
(ext)(∆) ≡ Bji

(ext)(Ω - Ω′) ≡ AjΩiΩ′, which leads to

where ∆ ) Ω - Ω′ is the relative distance between the
lattice cells Ω and Ω′, measured in units of number of
cells. In eq 19 the matrix B(int) ) {Bji

(int)} is the con-
nectivity matrix inside a given cell consisting of s beads.
In contrast, the matrix B(ext)(∆) ) {Bji

(ext)(∆)} provides
the intercell connections: The nonzero elements of the
matrices Bji

(ext)(∆) have as values negative integers; a
value (-l) for Bji

(ext)(∆) indicates that the total number
of connections between bead j of cell Ω and bead i of
cell Ω′ ) Ω - ∆ equals l. In the case of a regular lattice
built from subunits in the manner of Figure 1, the sum
over ∆ in eq 19 runs only over nearest-neighbor cells.
Thus, in the 3D cubic network of Figure 1 the cell Ω )
(R, â, γ) is directly connected to its following six
neighbors: (R - 1, â, γ), (R + 1, â, γ), (R, â - 1, γ), (R,
â + 1, γ), (R, â, γ - 1), and (R, â, γ + 1); hence, ∆ ∈{(1,
0, 0), (-1, 0, 0), (0, 1, 0), (0, -1, 0), (0, 0, 1), (0, 0, - 1)}.

Because of the symmetry inherent in eq 19, the
diagonalization of the connectivity matrix A of the
network now simplifies. From a formal point of view the
situation is very close to solid-state physics (Bravais

lattice with a basis). However, one should note that in
the arguments leading to eq 19 only the connectivity (a
topological feature) entered. Hence, the networks con-
sidered here are not required to be translationally invar-
iant. As an example, the positions of the beads (j, Ω),
(j, Ω + ∆), and (j, Ω + 2∆) are not related by a single
translation operator, as would be (in first-order) the case
in a crystal. Here we have a GGS consisting of flexible
subunits, whose conformations change widely under the
underlying random Brownian forces and hence differ
much from cell to cell. Nevertheless, using eq 19, we
can proceed quite formally: We apply periodic boundary
conditions to the whole GGS network and hence look
for solutions to our Langevin equations of the form

In eq 20 i is the imaginary unit, τ0 ) ú/K is a
characteristic (minimal) relaxation time of the network
system, the Cjk are constants, and the k ) (k1, k2, k3)
obey

where the integers m1, m2, and m3 range from 0 to (N
- 1). Furthermore, the λ(k) denote the different eigen-
values as functions of the parameter k. Distinct from
solid-state physics, however, here the three-component
vector k simply counts the eigenvalues (modes) and is
not related to a reciprocal wave vector.

Inserting eqs 20 and 19 into the Langevin equations
of motion leads to

where the elements of the matrix B(k) ) {Bji(k)} are
given by

We remark that the matrices B(k) include now all the
information concerning the topology (connectivity) inside
each cell and also the way in which the cells are
connected to each other. There are N3 different B(k)
matrices, in which the exp(-ik‚∆) terms describe the
phase shifts between the lattice cells. According to eq
22, the problem of finding the eigenvalues of the
connectivity matrix A, which is a (sN3 × sN3) matrix, is
now reduced to the related problem of determining the
eigenvalues of N3 different (s × s) matrices.

We close this section by stressing that the derivation
of eq 22 presented here is general and that it holds for
an arbitrary topological structure of the subunits in-
volved. Moreover, the 3D cubic lattice considered here
is only a particular example of a regular lattice. Our
approach can be easily extended to other lattice types.
For instance, all the results of this section are valid also
for a 2D square lattice built from complex subunits; to
describe it one simply has to set k3 ) 0 in all the
k-dependent equations established so far.

4. Numerical Calculations: 2D Regular Lattice
Built from SWRN Subunits

Now we apply our general approach to one particular
example of a network model, which allows us to combine

RjΩ(t) ≡ RjRâγ(t) ) ∑
k1,k2,k3

Cjk exp(i[k1R + k2â +

k3γ]) exp(-λ(k)t/τ0) (20)
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N
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2πm2

N
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2πm3

N
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high local disorder and mesoscopic order. In the case
when cross-linking occurs in very dilute solutions of long
flexible macromolecules, different polymer chains may
be treated fairly independently of each other. Because
of the stochastic features involved (random-walk-type
configurations, Gaussian stochastic forces, etc.), mono-
mers distant along the chain backbone may get close in
space; then, by means of irradiation such monomers can
be chemically cross-linked. It follows that in very dilute
solutions cross-link agglomerations are formed mostly
from the individual chains, whose (originally distant)
monomers get to be cross-linked. On the other hand,
this type of cross-link is the hallmark of newly intro-
duced connected structures, the so-called small-world
Rouse networks (SWRN).25

In general, small-world networks (SWN)26,27 are built
from an underlying ordered lattice (say one-dimen-
sional), to which one adds (with probability q) additional
bonds between randomly chosen points. One intriguing
property of 1D SWNs consists of the appearance of a
so-called pseudogap28 in the density of states, F(λ), which
goes as F(λ) ∼ λ-1/2 exp[-C/λ1/2] for small λ’s. This means
that the probability to find nonvanishing eigenvalues
very close to 0 is extremely small. Small-world Rouse
networks (SWRN) are now built from SWNs, by taking
the sites to be Rouse beads and the bonds to be Rouse
springs. From a theoretical point of view, we find the
SWNs particularly useful, since each class of SWNs is
determined by a single q parameter. In this work we
will focus on such basic SWNs; whether adding bonds
according to more complex distribution probabilities
(i.e., by accounting for dependences on mutual distances,
for correlations in adding bonds, etc.) leads to a more
realistic pictures than the basic SWNs is a topic of
recent debate.29,30

We take thus the lattice subunits to be 1D SWRNs
(see Figure 2) and study the mechanical and dielectric
response of a 2D square lattice composed of such
SWRNs. In the SWRN construction we start from a
linear Rouse chain consisting of n beads connected by
elastic springs. Then we connect (by means of additional
springs) each bead of the chain in a random way (with
probability q/n) to some other bead (cf. ref 25); see
Figure 2. This leads to one specific, q-dependent SWRN
realization. Finally, we use this SWRN realization as

subunits of a 2D N × N square lattice, obtaining our
GGS.

The knowledge of the GGS leads directly to the matrix
A, which has to be diagonalized; as noted in the previous
section, however, we need only to diagonalize its corre-
sponding N2 B(k) matrices and thus determine their
eigenvalues. For this we use standard routines31 for the
diagonalization of symmetric matrices and determine
for each B(k) its s ) (2n + 1) eigenvalues. As parameters
we take in the following calculations n ) 200, N ) 20
and vary q and the number of SWRN realizations.

We begin with the calculation of the time-dependent
relaxation modulus G(t) for our GGS. To get an idea of
how sample to sample fluctuations influence the results,
we start to calculate G(t) for isolated single SWRNs,
which are not yet embedded in the lattice. We focus both
on rather small (q ) 0.05) and on sufficiently large (q
) 0.5) values for the probability q and consider 10
different realizations of the SWRN. Then we use the
two extremal G(t) plots to determine the “worst” SWRN
realizations for each q. These are then used as subunits
of the 2D lattice, for which we again evaluate G(t).

In Figure 3 we plot in double-logarithmic scales the
corresponding curves of the reduced (dimensionless)
relaxation modulus G(t)/νkBT vs the reduced time t/τ0.
As is evident, the differences between the curves of the
extremal cases are rather small, and the shapes of the
curves are very similar for the two realizations. The
curves clearly show the existence of several domains:
these are related to the initial relaxation which involves
only a few beads, to the relaxation of individual SWRN
subunits, to an intermediate domain, and to the dynam-
ics of the underlying square lattice. The spread in the
G(t) curves can be directly attributed to the individual
SWRN realizations underlying the disordered network.
Moreover, with decreasing q the curves become smoother,
but the spread due to different SWRN realizations
increases. This finding reflects the growing importance
of fluctuations for small q.

In Figure 4 we plot the relaxation modulus G(t) of
disordered networks, averaged over 100 realizations of
SWRN subunits. To display the dependence of G(t) on
disorder (i.e., on q), we let q take the values 0, 0.05, 0.1,
0.3, and 0.8. The curve q ) 0 in Figure 4 corresponds to

Figure 2. A subunit of particular interest: a small-world
Rouse network (SWRN); see text for details.

Figure 3. Reduced relaxation modulus G(t)/νkBT plotted in
double-logarithmic scales vs the reduced time t/τ0. Shown are
results for two extreme realizations (out of ten) for SWRN-
built networks with q ) 0.05 and q ) 0.5; see text for details.
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the standard linear Rouse chain between lattice junc-
tions.21-24 From Figure 4 one can distinguish very
clearly, for q ) 0, several characteristic time ranges for
G(t): Just after the initial domain, t < 10-1τ0, one can
see the region of internal relaxation of the Rouse chain
between lattice vertexes, which extends up to t < 103τ0;
this domain is followed, up to times t ∼ 106τ0, by the
pure lattice relaxation. As remarked in the first para-
graph of section 3, for a linear Rouse chain (d ) 1) and
for a 2D regular lattice (d ) 2) the relaxation modulus
scales, G(t) ∼ t-R, where R ) d/2. The crossover from
the t-1/2 to the t-1 behavior can be clearly seen in Figure
4 for q ) 0 at t = 103τ0. Finally, at even longer times
one has a simple exponentional decay of G(t), a feature
typical for GGSs of finite size.

We remark, based on Figure 4, that even a small
amount of additional bonds introduced into the Rouse
chain (i.e., q * 0) drastically changes the relaxation form
from the simple chain (q ) 0) behavior. With increasing
q the region of intra-subunit relaxation becomes smaller,
because the rigidity of the subunits increases with q.
We note also that, in contrast to linear Rouse chains,
small-world Rouse networks themselves represent an
example of systems obeying a non-power-law behavior.25

Therefore, a simple picture involving several scaling
regions (as found for q ) 0) is not observed for q * 0.
Moreover, in the case of q large we observe in the region
intermediate between intra-subunit and lattice relax-
ation a plateau-type behavior for G(t).

To gain a better understanding of the dynamic
processes going on in the disordered network under
study, we compare in Figure 5 for q ) 0.8 the relaxation
modulus G(t) of a network built from SWRN subunits
to the G(t) obtained for single SWRN subunits with free
and fixed ends. From Figure 5 we infer that, after the
internal relaxation of SWRN subunits comes to a close,
the lattice relaxation barely starts, which means that
at this point in time the lattice junctions are still
immobile. We base this assertion on the appearance of
a rather wide, plateau-type domain in the network’s G(t)
function. In this region (as is evident by inspection of
Figure 5), the SWRN subunits of the network behave
like SWRNs with fixed end points; this means that there

is little lattice relaxation going on in this region. Such
a G(t) behavior is characteristic for the existence of a
gap in the relaxation spectrum of the network; the gap
extends between the maximal relaxation time of a
SWRN subunit and the minimal relaxation time of the
lattice.

The same effects are also evident in the storage
modulus G′(ω). We plot in Figure 6 for different q values
G′(ω), obtained from averaging over 100 SWRN realiza-
tions. We again find that introducing even a small
amount of additional springs into the linear Rouse chain
(i.e., going to SWRN) changes the character of the q )
0 curve corresponding to the reqular situation. For large
q values G′(ω) displays again very clearly (now as a
function of ω) a plateau domain, a fact which discloses
the existence of a gap in the density of states of the
disordered network.

Similar conclusions can also be drawn from the loss
modulus G′′(ω), depicted in Figure 7. However, we find

Figure 4. Dimensionless relaxation modulus G(t)/νkBT vs the
reduced time t/τ0 in double-logarithmic scales. Shown are
results for SWRN-built networks with q ) 0, q ) 0.05, q )
0.1, q ) 0.3, and q ) 0.8. The averaging is performed over 100
distinct SWRN realizations.

Figure 5. Dimensionless relaxation modulus G(t)/νkBT vs the
reduced time t/τ0 in double-logarithmic scales for q ) 0.8.
Displayed are a single, free SWRN (circles), the same SWRN,
but with fixed ends (dashed line), and the corresponding, 2D
square lattice decorated with such SWRN subunits (solid line).

Figure 6. Reduced storage modulus G′(ω)/νkBT plotted in
double-logarithmic scales vs the reduced frequency ωτ0. Shown
are results for networks with q ) 0, q ) 0.05, q ) 0.1, q ) 0.3,
and q ) 0.8. The averaging is performed over 100 SWRN
realizations.
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that the curves of G′′(ω) reflect less clearly than G′(ω)
the aspects related to the network’s disordered structure
(cf. Figures 6 and 7). Mathematically, of course, G′(ω)
and G′′(ω) carry the same information. Now, the quan-
tity G′′(ω) corresponds to the loss of energy in the system
and displays a maximum, whose position is mainly
determined by rather high-frequency modes. Given that
such modes involve just a few beads, their motion (and
hence the maximum’s position) depends only weakly on
disorder (i.e., on q).

We end this exposition of numerical results with
quantities related to dielectric relaxation. Given the
connection between the mechanical and the dielectric
relaxation forms, eqs 16 and 17, we refrain from
displaying ∆ε′′(ω) here, since the plots for the loss
modulus G′′(ω) (Figure 7) and the dielectric loss factor
∆ε′′(ω) differ only by a shift along the frequency axis.
Turning to the real part of dielectric susceptibility
∆ε′(ω), we display it in Figure 8 for different q values.
From Figure 8 one may deduce that with increasing q
the regions of intra-subunit relaxation become narrower

and that they shift toward high frequencies; these facts
are due to the increasing rigidity of the subunits with
growing q. One may remark, for q large, the appearance
in ∆ε′(ω) of a steplike, plateau domain. A detailed
analysis (not displayed here) shows unambiguously that
this plateau is due to the above-mentioned gap in the
relaxation spectrum. It follows that the gap can also be
evidenced through dielectric relaxation measurements.

5. Conclusions
The main goal of this paper was to understand the

role of strong structural inhomogeneities on the dynamic
properties of cross-linked polymers. On the basis of
recent experimental data, we confined our study to a
special class of disorder, namely to the presence of cross-
link agglomerations (clusters) in polymer networks and
gels. To this purpose we put forward a model, which
allows to combine local aspects of disorder with features
of mesoscopic order: We focused on (topologically)
regular lattices, whose vertexes are connected by com-
plex subunits. Such models take into account the
disorder inside the cross-link agglomerations through
the subunits and also reflect, through the regular lattice,
the mesoscopically rather homogeneous character of the
samples. On the basis of the Rouse model and on its
GGS extensions, we displayed the response functions
of such systems under external fields, situations of much
experimental relevance. Exemplarily, we applied the
formalism to networks built from highly disodered
subunits (small-world Rouse networks, SWRN). We
found that for such networks the mechanical and
dielectric responses are very sensitive to disorder:
Networks built from SWRN subunits show interesting
relaxation features and an unusual plateau-type be-
havior in the frequency (time) domain intermediate
between the modes of the subunits and those of the
regular lattice. As pointed out, this behavior is related
to the existence of a gap in the relaxation spectrum of
SWRN-built networks. To our knowledge, such features
have not yet been highlighted in the analysis of experi-
ments performed so far. The theoretical results derived
in this paper may serve as an incentive to look carefully
for such features in future experimental efforts on the
dynamics of disordered polymer networks and gels. Our
numerical evaluations show that several features of
such (locally highly disordered and mesoscopically
rather homogeneous) media are amenable to detection
through mechanical and dielectric relaxation experi-
ments.
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Appendix
We have to calculate the normalized autocorrelation

function of the total dipole moment C0(M; t) of the GGS,
eq 9. We start with the expression for 〈〈M(0) M(t)〉〉or,
eq 11, which can be rewritten as

since the vector of the jth bond between the lth and the
mth GGS beads is Pj ) Rl

(j) - Rm
(j). Here the subscript

Figure 7. Reduced loss modulus G′′(ω)/νkBT plotted in double-
logarithmic scales vs the reduced frequency ωτ0. Shown are
results for SWRN-built networks with q ) 0, q ) 0.05, q )
0.1, q ) 0.3, and q ) 0.8. The averaging is performed over 100
SWRN realizations.

Figure 8. Real part of the dielectric susceptibility ∆ε′(ω)
plotted in semilogarithmic scales vs the reduced frequency ωτ0.
Shown are results for networks with q ) 0, q ) 0.05, q ) 0.1,
q ) 0.3, and q ) 0.8. The averaging is performed over 100
SWRN realizations.

〈〈M(0) M(t)〉〉or )

µ2 ∑
j)1

Nb

〈(Rl
(j)(0) - Rm

(j)(0))(Rl
(j)(t) - Rm

(j)(t))〉 (A1)
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index (j) means that the lth and the mth GGS beads
belong to the jth bond. Let S ) {Slk} be the matrix that
relates the normal modes Qk(t) of the GGS to the
corresponding coordinates Rl(t):

The matrix S also reduces the connectivity matrix A of
the GGS to diagonal form. In other words, under this
transformation the Langevin equations of motion, eq 1,
simplify to

where λk is the kth eigenvalue of the connectivity matrix
A and úWk(t) is the normal mode transform of the
thermal noise; we omit for simplicity the external force
F(t).

Inserting the normal mode transformation, eq A2, into
eq A1 leads to

where we use the orthogonality of the normal modes
and also their simple time behavior (i.e., that each
normal mode Qk decays exponentially with the relax-
ation time τk ) τ0/λk):

With the use of eq A3 it is a straightforward matter to
demonstrate that

See, e.g. refs 21 and 22 for details. Hence, we need
only to calculate the sum over j in eq A4. For this
purpose we analyze in more detail the transformation
of the potential energy U({R}) of the GGS, which enters
in the Langevin equation, eq 12. The normal mode
transformation, eq A2, reduces the potential energy
U({R}), eq 12, to diagonal form, i.e.

Therefore, one has immediately

Inserting eqs A6 and A8 into eq A4 finally brings the
quantity 〈〈M(0) M(t)〉〉or into the following form:

From this expression it follows that

i.e. eq 13.
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