
Viscoelastic Dynamic Properties of Meshlike Polymer Networks:
Contributions of Intra- and Interchain Relaxation Processes

Andrew A. Gurtovenko* and Yuli Ya. Gotlib

Institute of Macromolecular Compounds, Russian Academy of Sciences,Bolshoi Prospect 31, V. O.;
St. Petersburg, 199004, Russia

Received October 6, 1999; Revised Manuscript Received March 10, 2000

ABSTRACT: The theory of intra- and interchain relaxation processes for the local dynamic characteristics
of meshlike polymer networks has recently been proposed by the authors (Macromolecules 1998, 31, 5756).
The extension of this theory to macroscopic viscoelastic characteristics is presented. A regular cubic
network consisting of “bead and spring” Rouse chains embedded in an effective viscous medium is
considered. The viscoelastic response of the polymer network to an external stress producing a longitudinal
velocity gradient in the effective viscous medium is studied. The comparisons of contributions from intra-
and interchain relaxation processes to the dynamic modulus and viscosity of the Gaussian network are
made. The asymptotic behavior of dynamic quantities considered is estimated for various limiting regions
of frequency. The possibility of a simplified description of the viscoelastic properties of a polymer network
in terms of a coarse-grained network model and a melt consisting of un-cross-linked chains is
demonstrated. The problem of hydrodynamic interactions in polymer networks is also discussed.

1. Introduction

The dynamic behavior of polymer networks is a very
interesting area of polymer physics. The polymer chains
in a network are connected with each other by means
of cross-links in an unified spatial structure. As a result
of this connectivity, long-range cooperative motions of
macromolecules exist in a polymer network; they have
characteristic scales greater than the average length of
network chains between cross-links. The existence of
these cooperative motions of polymer chains in the
network is reflected in the relaxation processes mani-
fested in cross-linked polymer systems and can lead to
the difference between relaxation properties of cross-
linked polymers and polymer solutions or melts consist-
ing of un-cross-linked macromolecules.

The theoretical consideration of dynamic properties
of real polymer networks is a rather difficult problem
because of structure irregularity of the networks result-
ing in complex character of relaxation. Therefore, we
use the well defined regular model of a network to study
the effect of spatial network structure on the dynamic
properties of a polymer. Recently, we have proposed the
theory of intra- and interchain relaxation processes for
the local dynamic characteristics of meshlike polymer
networks.1 The mean-square displacements of network
elements and the relaxation of end-to-end chain vectors
between cross-links have been studied in terms of a
regular cubic network model consisting of “bead and
spring” Rouse chains.2 These local dynamic character-
istics can be manifested in dielectric relaxation3,4 and
dynamic light scattering in cross-linked polymers. The
main goal of the present work is to extend this approach
to macroscopic characteristics determining the visco-
elastic response of polymer networks.

The paper is organized as follows. The total stress
arising in a network under external perturbation and
the frequency-dependent dynamic modulus and viscosity
will be calculated using a regular Gaussian network
model that takes into account both small-scale intra-
chain and collective interchain motions. A comparison
of contributions from intra- and interchain relaxation
processes determining the viscoelastic characteristics
considered will be made. The viscoelastic characteristics
of a polymer network of multisegmental Rouse chains
will be compared with those of a simplified coarse-
grained network model in which each polymer chain
between junctions is described by a single Gaussian
spring. Moreover, the comparison of viscoelastic me-
chanical properties of the polymer network and the melt
of un-cross-linked macromolecules with the same chain
lengths as in the network will be made.

2. Theory

Viscoelastic mechanical properties of cross-linked
polymers are considered in terms of a regular cubic
network consisting of “bead and spring” Rouse chains1

(Figure 1). This dynamic network model allows the
relative contributions from intra- and interchain net-
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Figure 1. Dynamic model of a three-dimensional cubic
network perturbed by an external stress σext applied to the
opposite network boundaries (planar picture).
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work motions to be studied. To study the viscoelastic
mechanical properties of a polymer network, one can
consider its response to an external perturbation (stress).
It is assumed that the external stress is applied directly
to the boundaries of a polymer sample. A dry polymer
network without solvent is considered. According to the
well-known approach developed for polymer melts,5 an
effective viscous medium can be introduced into a
concentrated polymer system. The effective medium
describes viscous interactions of a given segment with
all other segments; these interactions cannot be reduced
to the intersegmental friction between a given pair of
segments. Making an extension of this approach to
cross-linked bulk polymers (elastomers), one can assume
that a similar effective medium exists in a dry polymer
network. This medium takes into account the stochastic
character of contacts of network chain segments and the
degrees of freedom which are not included in the
network model (e.g., elements smaller than the Gauss-
ian segment, side groups, dangling chains, etc.).

It is assumed that an external stress σext applied to
the opposite boundaries of a network (Figure 1) consists
of two parts

The constant stress component σ0 stretches the network
system and ensures its fixed average volume. This
corresponds to the approach of James and Guth,6,7 who
have introduced internal pressure into the three-
dimensional Gaussian network model to prevent its
collapse to infinite density. The second stress component
δσext exp(iωt) determines the periodic motion (at a
frequency ω) of network boundaries about their average
positions fixed by the stress σ0. It is essential that the
effective viscous medium of a network system relaxes
much more rapidly than the degrees of freedom of the
network (junctions and nonjunction beads of network
chains). This means that external perturbation affects
at first (at small times) only the effective viscous
medium and produces a certain velocity field in it. This
perturbation does not yet affect the network degrees of
freedom. After the medium is perturbed, the network
elements (junctions and nonjunction beads) begin to
move with respect to the effective medium which is
already perturbed by external perturbation. The above
approach is quite analogous to that for polymer melts.5

The small periodic displacements of network bound-
aries with respect to their average positions are as-
sumed to produce a longitudinal velocity gradient of an
effective viscous medium. If the medium is purely
viscous and its viscosity is ηm, the internal stress σm
resulting from the deformation of medium is given by

where G is the longitudinal velocity gradient. There is
some uncertainty related to the viscosity value ηm of the
effective medium. In dynamic theory of polymer melts,
the quantity ηm has been assumed to be close to the
viscosity of a melt consisting of polymer monomers.5 A
similar assumption may also be used for the dry polymer
network considered.

Let an external stress σext (see eq 1) act on the
network along the X axis of the Cartesian coordinate
system (Figure 1). A cross-linked polymer sample as a
whole is incompressible. The constancy of the network
volume V0 under a small deformation means that the

network extension δX along the X axis should lead to
the compression along the Y and Z axes. The following
condition must be fulfilled: δX ) -(1/2)δY - (1/2)δZ. In
other words, when an external stress produces a small
longitudinal velocity gradient in the effective medium
along the X axis, the internal pressure in the network
sample leads to the appearance of longitudinal gradients
in normal directions. In the case of a network consisting
of Gaussian chains, the motions of X, Y, and Z compo-
nents of position vectors of network elements are
independent of each other. The equations of motion of
each Cartesian component are linear and have identical
forms. Therefore, it is sufficient to consider only the
network deformation along the direction of an external
stress, i.e., along the X axis (Figure 1). The consideration
of network deformations along the directions normal to
the X axis is analogous.

A longitudinal velocity gradient G of effective viscous
medium is given by

where G0 ) |G| is the absolute value of velocity gradient.
Since the effective viscous medium of a dry polymer
network is modeled by stochastic interactions between
the degrees of freedom of the same network, the motion
of this medium should be self-consistent with the
macroscopic deformation of cross-linked polymer sample.
The network deformation L(t) along the X axis is
determined as

where L0 is the average linear size of the cross-linked
polymer along the X axis and δL(t) is the network
deformation with respect to the average linear size L0.
Then the longitudinal velocity gradient G of an effective
viscous medium is directly related to the deformation
δL(t) of a polymer sample:

Equation 5 describes the interconnection between the
motion of an effective viscous medium and the macro-
scopic deformation of a polymer network.

In the simplest hypothetical case, when the network
elements (junctions and nonjunction beads) do not
interact with an effective viscous medium, the viscoelas-
tic response of the polymer network sample may be
described by a simple Voigt element8 consisting of a
spring and a dashpot, which are connected in parallel.
The viscosity of the dashpot equal to that of the effective
viscous medium ηm, and the elasticity constant of the
spring corresponds to the equilibrium modulus Ge of
polymer network. Then the internal stress σ arising in
the polymer network as a response to an external
perturbation would be given by the sum of two inde-
pendent components: the stress σm corresponding to the
deformation of the medium (eq 2) and the stress σel
resulting from the deformation of elastic Gaussian
springs which form the network. The latter stress
component is given by

σext ) σ0 + δσext exp(iωt) (1)

σm ) Gηm (2)

G ) G0 exp(iωt) (3)

L(t) ) L0 + δL(t) (4)

G ) d
dt

δL(t)
L0

(5)

σel )
δL(t)

L0
Ge (6)

Macromolecules, Vol. 33, No. 17, 2000 Properties of Meshlike Polymer Networks 6579



If the interactions between the network and the effective
viscous medium are taken now into consideration, an
additional stress component σint corresponding to these
viscous interactions appears. It is this stress component
that determines the frequency and time dependences
of viscoelastic characteristics of a polymer network.
Hence, the total internal stress σ arising in a bulk cross-
linked polymer has the form9

where the stress components σm and σel are given by
eqs 2 and 6, respectively. It should be emphasized that
there are two main features which distinguish the
network model proposed from the dynamic model of
polymer melts.5 First, in cross-linked polymers there is
the nonzero equilibrium modulus Ge and, therefore, an
additional stress contribution σel absent in melts. Sec-
ond, the polymer chains in a network are connected with
each other in a three-dimensional spatial structure. This
leads to a more complicated form of the main nontrivial
stress component σint determining the frequency de-
pendences of dynamic moduli as compared with those
of polymer melts.

To obtain the stress component σint and, therefore, to
calculate the dynamic modulus and viscosity of a
polymer network, we use the method of calculation of
the additional work Aadd which is made by the network
owing to the friction of polymer chains against an
effective viscous medium. This is a widely used standard
approach, and it may be found elsewhere.5,8,10 In gen-
eral, the additional work Aadd per unit volume and per
unit time, which arises from the motion of network
chains in an effective viscous medium, is given by

Here V is the volume of a network, Tω is the period of
an external force acting at a frequency ω, Vm

/ (X) is the
complex conjugate of velocity of an effective viscous
medium in the vicinity of a network element X, and 〈...〉
means the configurational average. Note that eq 8
determines the additional work due to network exten-
sion along the X axis. As mentioned above, in an
incompressible polymer sample this extension should
be accompanied by the compression in the normal
directions. The calculations of corresponding additional
works arising from network compressions along the Y
and Z axes are quite analogous to those for the defor-
mation along the X axis (longitudinal velocity gradient
G should be replaced by the quantity (1/2)G).

We shall make all the calculations of Aadd in terms of
the Rouse model,2 i.e., the hydrodynamic interactions
between the network chains and the viscous medium
will be neglected. At the end of the paper (section 3.4)
we shall discuss the problem of hydrodynamic interac-
tions. In the Rouse approximation, the friction force
Ffr(X) acting on the network elements from a perturbed
effective viscous medium has the form ς[Vm(X) - Ẋ]
where ς is the friction constant of a given network
element (junction or nonjunction bead) and Vm(X) ) G0X
exp(iωt) is the velocity of the viscous medium in the
vicinity of network element X. As has been shown,1,11

the exact analytical solution for relaxation times of a
regular cubic network consisting of “bead and spring”

Rouse chains can be obtained if the friction constant of
a junction is three times greater than that of a non-
junction bead (in other cases the solution can be found
using numerical calculations). Hence, friction forces
acting on the junctions and nonjunction beads of net-
work chains differ from each other. They are given by
3V0[Vm(X) - Ẋ] and V0[Vm(X) - Ẋ] for a junction and a
nonjunction bead, respectively (here V0 is the friction
constant of a nonjunction bead).

As mentioned above, the network system considered
is characterized by the fixed average volume ensured
by the constant component σ0 of an external stress (see
eq 1). This means that the average values of projections
of position vectors of the network elements are not equal
to zero. This distinguishes them from the “unstrained”
polymer networks embedded in a viscous medium (see,
for example, ref 12), and polymer solutions and melts.5,8,10

In a Gaussian network having a fixed average volume,
the X projection of the position vector of a given network
element X(t) consists of the nonzero average value 〈X〉
and the time-dependent fluctuating part δX(t), i.e., X(t)
) 〈X〉 + δX(t). The quantities 〈X〉 are determined by the
average positions of network elements in space and
would have to provide an additional contribution to the
work Aadd as compared with the “unstrained” polymer
networks for which 〈X〉 ) 0. This contribution corre-
sponds to the spectrum of average values of displace-
ments of network elements 〈δX(t)〉. However, the above-
mentioned interconnection between the motion of an
effective viscous medium and the macroscopic network
deformation (eq 5) leads to an affine (homogeneous)
deformation of a polymer network. As a result, the
average velocities of network elements are equal to
those of the effective viscous medium in the vicinity of
these network elements: 〈Ẋ(t)〉 ) 〈Vm(X)〉. In other
words, the average value of friction force acting on a
network from a viscous medium is equal to zero and
does not make any contributions to the additional work
Aadd (eq 8). This means that only the relaxation spec-
trum of mean squares 〈δX2(t)〉 of displacements of
network elements is excited in this system (spectrum
of average values 〈δX(t)〉 does not appear). This fact was
rigorously demonstrated in the frame of a simplified
coarse-grained network model9 and may be easily
extended to a network model consisting of multiseg-
mental Rouse chains.

Taking into account the difference between the fric-
tion constants of a junction and a nonjunction bead and
all the above considerations concerning the average
values 〈X〉, the additional work Aadd (see eq 8) may be
rewritten as

where

Here δX0(Ω;t) and δXp(Ω;j;t) are the fluctuating parts
of X projections of junctions and nonjunction beads,
respectively. An elementary cell of a cubic network
consists of a junction and three “bead and spring” Rouse

σ ) σm + σel + σint (7)

Aadd )
1

V

1

Tω

∫0

Tω∑
X

〈Ffr(X)Vm
/ (X)〉 dt (8)

Aadd )

-
G0

V
1

Tω
∫0

Tω〈(12V0 exp[-iωt] d
dt

I(δX) - G0V0I(δX))〉 dt

(9)

I(δX) ) ∑
Ω

[3δX0
2(Ω;t) + ∑

p ) 1

3

∑
j ) 1

n

δXp
2(Ω;j;t)] (10)
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chains. All the network chains have the identical
contour lengths. A Rouse chain between cross-links
(junctions) consists of n “beads” with a friction constant
V0 and (n + 1) “springs” with an elasticity constant K0.
As mentioned above, the case when the friction constant
of a network junction is equal to 3V0 is considered. Each
junction of a regular cubic network is marked by a three-
component index Ω ) (R,â,γ). The quantities R, â, and
γ range from unity to the number of network junctions
N along a given Cartesian direction. The total number
of the junctions in a network is equal to N3. Each
nonjunction bead in a chain between network junctions
is marked by the number Ω ) (R,â,γ) of a cubic network
cell, by the number p of a chain in the cubic cell (p )
1...3), and by the number j of the bead along the network
chain (j ranges from 1 to n).

In contrast to a simplified coarse-grained network
model9,12 where a chain between junctions is modeled
by a single Gaussian spring and all the network ele-
ments (junctions) are identical, the network model
considered contains the elements of two sorts: junctions
and nonjunction beads in the chains between junctions,
which differ in their friction constants. Therefore, the
main problem in the calculation of an additional work
Aadd is in the determination of different weights con-
tributed by network junctions δX0(Ω;t) and nonjunction
beads δXp(Ω;j;t) to the quantity Aadd (eqs 9 and 10). To
obtain the additional work Aadd we use the normal mode
treatment. It is assumed that an external perturbation
applied to a network is small. It corresponds to the
smallness of a longitudinal velocity gradient of an
effective viscous medium. Therefore, the normal modes
of a network which is not perturbed by an external
stress may be used. The transformation from Cartesian
coordinates to normal modes for elements of a nonper-
turbed cubic network has been obtained previously1 and
may be written in the following form:

Here ψ is the intrachain wave vector determining the
phase shift between displacements of neighboring beads
in a network chain and θB is the interchain wave vector
describing the phase shift between network cells. Note
that the coefficients Cp(Ω,j;θB,ψ) and C0(Ω,θB,ψ) may be
complex values.

The normal mode transformation allows the potential
energy U(X) and dissipation function R(X) of a cubic
network consisting of “bead and spring” Rouse chains
to be diagonalized simultaneously. In the case of dis-
sipation function, this means that the following condi-
tion should be fulfilled:1

Substituting the normal mode transformation (eqs 11)
into this condition, one can obtain the relation between
the coefficients of the normal mode transformation:

Using this relation and the normal mode transformation
(eq 11), eq 9 for the additional work Aadd may be
rewritten as

where

One can see from eqs 14 and 15 that the additional work
Aadd is determined by the mean squares of normal modes
〈Q2〉. They may easily be obtained from the equations
of motion of a Gaussian network with the use of
condition of the smallness of an external perturbation
(or a velocity gradient G0).

The equations of motion of the network elements with
respect to an effective viscous medium in which a
longitudinal velocity gradient G ) G0 exp[iωt] exists
have the following forms for a nonjunction bead (cf. ref
1)

and for a network junction

Here FBr(δX) is the stochastic Brownian force. Using
normal mode transformation (eqs 11) one can obtain the
equations of motion of normal modes Q

After multiplying eq 17 by Q and averaging the equation
over all the configurations of a network system, the
equations of motion for the mean squares of normal
modes 〈Q2〉 can be obtained

Then one can use the perturbation theory with a small
parameter, namely, the solution of eq 18 may be
expanded in the power series of a small velocity

δXp(Ω;j;t) ) ∑
θB
∑
ψ

Cp(Ω,j;θB,ψ)Q(ψ,θB;t) (11a)

δX0(Ω,t) ) ∑
θB
∑
ψ

C0(Ω;θB,ψ)Q(ψ,θB;t) (11b)

∑
Ω

[3δẊ0
2(Ω;t) + ∑

p ) 1

3

∑
j ) 1

n

δẊp
2(Ω;j;t)] ) ∑

θB
∑
ψ

Q̇2(θB;ψ;t)

(12)

∑
Ω

[3C0(Ω;θB,ψ)C0
/(W;θB,ψ) +

∑
p)1

3

∑
j)1

n

Cp(Ω,j;θB,ψ)Cp
/(Ω,j;θB,ψ)] ) 1 (13)

Aadd )

-
G0

V
1

Tω
∫0

Tω(12V0 exp[-iωt] d
dt

I(Q) - G0V0I(Q)) dt (14)

I(Q) ) ∑
θB
∑
ψ

〈Q2(θB;ψ;t)〉 (15)

ú0[ d
dt

δXp(Ω;j;t) - G0δXp(Ω;j;t) exp(iωt)] +

K0[2δXp(Ω;j;t) - δXp(Ω;j + 1;t) - δXp(Ω;j - 1;t)] )
FBr(δXp(Ω;j;t)) (16a)

3ú0[ d
dt

δX0(R,â,γ;t) - G0δX0(R,â,γ;t) exp(iωt)] +

K0[6δX0(R,â,γ;t) - δX1(R,â,γ;1;t) -
δX1(R - 1,â,γ;n;t) - δX2(R,â,γ;1;t) -
δX2(R,â - 1,γ;n;t) - δX3(R,â,γ;1;t) -
δX3(R,â,γ - 1;n;t)] ) FBr(δX0(R,â,γ;t)) (16b)

ς0[ d
dt

Q(t) - G0Q(t) exp(iωt)] +

K02(1 - cos ψ)Q(t) ) FBr(Q) (17)

ς0[12 d
dt

〈Q2〉 - G0〈Q2〉exp(iωt)] +

K02(1 - cos ψ)〈Q2〉 ) kBT (18)
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gradient including terms up to first power of G0, i.e.,
〈Q2〉 ) C1 + C2G0 exp(iωt).

Finally, we obtain the following expression for the
additional work Aadd arising from the friction of network
chains against to a viscous medium

where ν is the number of cross-links per unit volume
and N3 is the total number of cross-links (junctions) in
the cubic network considered. The set of relaxation
times τ(ψ) manifested in mechanical relaxation of a
network is given by

Here ψ is the intrachain wave vector and τ0 is the
relaxation time of a single Gaussian subchain

where ς0 is the friction constant of a nonjunction bead
and K0 is the elasticity constant of a “spring” between
neighboring beads. The relaxation times manifested in
mechanical relaxation of a network are two times
smaller than those determining local relaxation proper-
ties (see eq 5 of ref 1). This is caused by the fact that
the spectrum of mean squares of normal modes 〈Q2〉 is
excited in macroscopic mechanical relaxation. This
situation differs from that in the local relaxation
phenomena (e.g., dielectric relaxation of polymer net-
works)3,4 in which the spectrum of average values of
normal modes 〈Q〉 is manifested. Note that the structure
of the expression for the additional work Aadd obtained
for a network consisting of “bead and spring” Rouse
chains (eq 19) is the same as that for a coarse-grained
network model9 (and for polymer solutions8,10 and melts5

as well) with corresponding sets of relaxation times.
This fact confirms the result obtained by Golovachev13

that the above structure of the expression for an
additional work Aadd holds for network systems with
arbitrary topologies if the interchain friction interac-
tions are neglected.

The additional work Aadd determines the stress con-
tribution σint arising from viscous interactions between
the network chains and the effective medium: σint )
Aadd/G0 (see, for example, refs 8 and 10). It is also
essential to take into account the contributions to the
additional work Aadd provided by the network compres-
sion along the axes normal to the direction of an
external stress (the X axis). These contributions may
be calculated in an analogous way as the additional
work arising from the deformation along the X axis and
are given by equations similar to eq 19 (quantity G0
should be replaced by (1/2)G0). Finally, the stress σint in
which we are interested (see eq 7) is given by

Here the quantities ψ1 and ψ2 represent two sets of

intrachain wave vectors of a cubic network consisting
of “bead and spring” Rouse chains. They are given by1

where the number of beads n in the network chain is
believed to be even. The interchain wave vector θB ) (θ1,
θ2, θ3) determines the phase shift between displace-
ments of neighboring network cells. Its components θ1,
θ2, and θ3 are given by1

where N is the number of cross-links along the given
Cartesian direction in a network. A cubic network as a
whole contains N3 junctions, and the interchain wave
vector θB has an infinitely large number of values in the
case of an infinitely large (macroscopic) network.

Using the expression obtained for the stress compo-
nent σint arising from viscous interactions between the
network elements and the effective medium (eq 22) and
taking into account the stress components σm and σel
(eq 7), one can obtain the expressions for complex
dynamic modulus G*(ω) and viscosity η*(ω) (see, for
example, ref 8):

Here Ge is the equilibrium modulus of a network and
ηm is the viscosity of an effective viscous medium.

One can see that the frequency dependences of
dynamic modulus and viscosity are determined by two
sets of relaxation times τ(ψ1) and τ(ψ2). The main and
more complicated set of relaxation times τ(ψ1) is deter-
mined by the phase shift along the network chain (first
term in eq 23a) as well as by the phase shift between
network cells θB (second term in eq 23a). Just these
relaxation times τ(ψ1) include the interchain collective
branch of network relaxation. If nonzero value of l is
fixed (see eq 23a), the broadening of relaxation time line
of a single chain is observed due to the change of the
interchain wave vector θB, i.e., due to the existence of a
spatial network structure. The corresponding relaxation
processes have characteristic times which range from
the relaxation time of a single Gaussian subchain τ0 (eq
21) to the maximum relaxation time of a chain between
cross-links (see eq 20 at ψ ) π/n + 1)

Aadd ) G0
22νkBT

1

N3
∑

θB
∑
ψ

τ(ψ)

1 + iωτ(ψ)
(19)

τ(ψ) )
2τ0

(1 - cos ψ)
(20)

τ0 )
ς0

8K0
(21)

σint )

G03νkBT[ 1

N3
∑

θB
∑
ψ1

τ(ψ1)

1 + iωτ(ψ1)
+ 2∑

ψ2

τ(ψ2)

1 + iωτ(ψ2)] (22)

ψ1 ) 2π
n + 1

l ( 1
n + 1

arccos1
3
(cos θ1 + cos θ2 + cos θ3);

l ) 0...n/2 (23a)

ψ2 ) π
n + 1

k; k ) 1...n (23b)

θ1,2,3 ) 2π
N

S1,2,3; S1,2,3 ) 0, ..., N - 1 (24)

G*(ω) )

Ge + 3νkBT[ 1

N3
∑

θB
∑
ψ1

iωτ(ψ1)

1 + iωτ(ψ1)
+ 2∑

ψ2

iωτ(ψ2)

1 + iωτ(ψ2)]
(25)

η*(ω) )

ηm + 3νkBT[ 1

N3
∑

θB
∑
ψ1

τ(ψ1)

1 + iωτ(ψ1)
+ 2∑

ψ2

τ(ψ2)

1 + iωτ(ψ2)]
(26)

τchain ) 4
π2

(n + 1)2 τ0 (27)
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and may be treated as intrachain relaxation processes.
If we put l equal to zero in eq 23a, we obtain a purely
interchain cooperative branch determined only by the
phase shift θB between network cells. The corresponding
relaxation processes have characteristic times ranging
from τchain to infinitely long times and may be treated
as interchain relaxation processes. Besides the relax-
ation times τ(ψ1), there is also a doubly degenerated set
of relaxation times τ(ψ2) determined by the purely
intrachain phase shift ψ2 (eq 23b). These relaxation
times correspond only to the intrachain relaxation
processes, namely, to the relaxation of a single Rouse
chain with fixed ends.1 In the next section the relative
contributions from intra- and interchain relaxation
processes to viscoelastic mechanical characteristics of
a polymer network will be compared.

3. Discussion

3.1. Dynamic Modulus of Elasticity of a Net-
work. The dynamic modulus of elasticity G′(ω) (real
part of complex dynamic modulus G*(ω)) of a polymer
network consisting of “bead and spring” Rouse chains
has the form (eq 25)

Here τ(ψ) are the relaxation times manifested in me-
chanical relaxation (eqs 20 and 21), ν is the number of
cross-links per unit volume, and Ge is the equilibrium
modulus of a polymer network. To compare the relative
contributions from intra- and interchain relaxation
processes to the dynamic modulus and to estimate the
frequency dependence of G′(ω) on various limiting
regions of frequency one can use the following ap-
proximation. The wave vector ψ1 at l ) 0 (see eq 23a)
corresponds only to interchain relaxation. The quantity
ψ1 at l * 0 corresponds to the contribution from
intrachain motions and is determined by the phase shift
2lπ/(n + 1) along the chain and by the phase shift θB
between network cells. The change of interchain wave
vector θB at fixed l * 0 influences slightly the relaxation
times τ(ψ1). To a first approximation, one can assume
for sufficiently long chains that the wave vector ψ1(l *
0) does not depend on the phase shift θB between network
cells. This means that we neglect the broadening of the
relaxation spectrum of a polymer network in the region
of intrachain relaxation (see also ref 1).

In the consideration of viscoelastic properties of a
Gaussian network, two characteristic frequencies ap-
pear. The first frequency is equal to the inverse relax-
ation time τ0 of a single Gaussian subchain. The second
one is equal to the inverse maximum relaxation time
τchain of a chain between network junctions. The char-
acteristic frequencies determine the following frequency
regions: the region of extremely high frequencies ω .
1/τ0 corresponding to the network relaxation on a scale
smaller than a Gaussian subchain size, the intermediate
high-frequency region 1/τchain , ω , 1/τ0 corresponding
to the relaxation on a scale-up to the dimension of a
chain between cross-links, and the low-frequency region

ω , 1/τchain corresponding to the large-scale collective
network relaxation.

The dynamic modulus of elasticity G′(ω) of a polymer
network in the low-frequency region (ω , 1/τchain)
behaves as

The interchain relaxation processes provide the main
contribution to the dynamic modulus in this frequency
region (Figure 2). The dynamic modulus G′(ω) of a
network consisting of “bead and spring” Rouse chains
has the same asymptotic frequency dependence in the
low-frequency region as that for a simplified coarse-
grained network model9,12 describing the collective
interchain relaxation only. With increasing frequency,
the contribution from interchain motions to frequency
dependence of G′(ω) becomes smaller. At w ≈ 1/2τchain
the interchain relaxation processes provide only the
constant contribution to dynamic modulus G′(ω) (see
Figure 3). In the high-frequency region (1/τchain , ω ,
1/τ0), the frequency dependence of G′(ω) is mostly
determined by the intrachain relaxation processes
(Figure 4) and has the form

Figure 4 indicates that the dynamic modulus G′(ω) -
Ge of a polymer network in the high-frequency region
has a similar behavior as the dynamic modulus of a melt
consisting of un-cross-linked polymer chains, which has
an additional constant component corresponding to the
high-frequency limit of an interchain contribution to

G′(ω) ) Ge + 3νkBT[ 1

N3
∑

θB
∑
ψ1

(ωτ(ψ1))
2

1 + (ωτ(ψ1))
2

+

2∑
ψ2

(ωτ(ψ2))
2

1 + (ωτ(ψ2))
2] (28)

Figure 2. Dynamic modulus of elasticity G′(ω) of a network
in low-frequency region ω , 1/τchain (solid line). Lines with open
circles (O) and solid squares (9) correspond to the inter- and
intrachain contributions, respectively. Here n ) 10.

Figure 3. Dynamic modulus of elasticity G′(ω) of a network
in low-frequency region up to frequency ω = 1/τchain (solid line).
The denotation of lines with symbols is the same as in Figure
2.

G′(ω) - Ge = νkBT(ωτchain)3/26x3π (29)

G′(ω) - Ge = νkBT(n + 1)xωτ0
24
π

(30)

Macromolecules, Vol. 33, No. 17, 2000 Properties of Meshlike Polymer Networks 6583



G′(ω) of the polymer network. It should be noted that
all the curves in Figures are plotted using exact analyti-
cal expressions without any approximations (see eq 28
in the case of G′(ω)). The approximation mentioned in
this Section is used only to estimate the asymptotic
behavior of viscoelastic mechanical characteristics con-
sidered.

3.2. Dynamic Viscosity of a Network. For dynamic
viscosity η′(ω) of a polymer network (real part of complex
dynamic viscosity η*(ω)) we have (see eq 26)

where ηm is the viscosity of an effective viscous medium.
In the region of high frequencies (1/τchain , ω , 1/τ0),
the dynamic viscosity η′(ω) of a network is determined
by the intrachain relaxation processes and behaves as

This is typical of a melt of un-cross-linked macromol-
ecules.5,8 With decreasing frequency, the influence of the
intrachain motions on frequency dependence of dynamic
viscosity η′(ω) becomes weaker. At ω e 1/τchain the
intrachain relaxation processes begin to provide only the
constant contribution independent of frequency (Figure
5). In the region of low frequencies (ω , 1/τchain) the
frequency dependence of η′(ω) is governed by the inter-
chain relaxation processes (Figure 5). In this low-
frequency region, the quantity η′(ω) behaves as

Here η′(0) is the dynamic viscosity of a polymer network
at zero frequency

where Cintra and Cinter are numerical constants. The
constants Cintra ≈ 5.1 and Cinter ≈ 6.3 correspond to the

contributions from intra- and interchain relaxation
processes to the dynamic viscosity η′(0) of a network at
zero frequency, respectively. The interchain contribution
to η′(0) is slightly greater than the intrachain contribu-
tion, the interrelation Cinter/Cintra ≈ 1.2 does not depend
on molecular weight of a chain between network junc-
tions.

It should be especially emphasized that the contribu-
tions from intra- and interchain relaxation processes to
dynamic viscosity at zero frequency have the same order
of magnitude. The quantity η′(0) represents the sum of
all relaxation times of a network (see eq 31 at ω ) 0).
The contribution from intrachain motions to dynamic
viscosity at zero frequency η′intra(0) is given by

Here H(τ) is the relaxation spectrum8 (or the distribu-
tion function of relaxation times on a logarithmic scale)
manifested in mechanical relaxation of a polymer
network. The relaxation spectrum H(τ) of a polymer
network consisting of “bead and spring” Rouse chains
has the usual Rouse-like behavior τ-1/2 in the short-time
region τ0 < τ < τchain (see ref 1). Therefore, the function
under the integral sign in eq 35 increases as xτ, and
the quantity η′intra(0) is determined by the maximum
relaxation time of intrachain motions, namely, by the
maximum relaxation time of a chain between cross-links
τchain (eq 27). The contribution from interchain motions
to dynamic viscosity η′intra(0), in turn, has the form

As shown in ref 1, the relaxation spectrum H(τ) of a
polymer network in the long-time interchain region τ
> τchain decreases as τ-3/2, i.e., more rapidly than the
spectrum in the intrachain region. Therefore, the func-
tion under the integral sign in eq 36 behaves as τ-1/2.
As a result, the quantity η′intra(0) is mostly governed by
the minimum relaxation time of large-scale interchain
motions, i.e., by the same relaxation time τchain. Thus,
the contributions from intra- and interchain relaxation
processes to dynamic viscosity at zero frequency are
approximately equal. This is an essential result. It
means that the intrachain motions provide noticeable
contribution to macroscopic viscoelastic characteristics

Figure 4. Dynamic modulus of elasticity G′(ω) of a network
in high-frequency region ω . 1/τchain (solid line). The denotation
of lines with symbols is the same as in Figure 2.

η′(ω) ) ηm + 3νkBT[ 1

N3
∑

θB
∑
ψ1

τ(ψ1)

1 + (ωτ(ψ1))
2

+

2∑
ψ2

τ(ψ2)

1 + (ωτ(ψ2))
2] (31)

η′(ω) - ηm = νkBT(n + 1)τ0
1

xωτ0

24
π

(32)

η′(ω) = ηm + η′(0) - νkBTτchainxωτchain
18x3π

5
(33)

η′(0) = νkBTτ0(n + 1)2[Cintra + Cinter] (34)

Figure 5. Dynamic viscosity η′(ω) of a network (solid line).
Lines with open circles (O) and solid squares (9) correspond
to the inter- and intrachain contributions, respectively. Here
n ) 20.

η′intra(0) ∼ νkBT∫τ0

τchainH(τ)τ d(ln τ) (35)

η′intra(0) ∼ νkBT∫τchain

∞
H(τ)τ d(ln τ) (36)
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of a polymer network (e.g., to the dynamic viscosity)
even in the low-frequency region corresponding to large-
scale interchain relaxation. In contrast, local dynamic
characteristics of the network are mostly governed by
interchain motions on a scale greater than the average
distance between cross-links.1

3.3. Simplified Description of Viscoelastic Prop-
erties of a Network. As shown in ref 1, the local
dynamic characteristics of a polymer network (e.g., the
mean-square displacement of a network junction) may
be described to a rather good approximation by an
simplified coarse-grained network model at times greater
than the maximum relaxation time of a chain between
cross-links. In the consideration of macroscopic visco-
elastic characteristics of the network, the situation is
more complicated because all network elements provide
contributions to the macroscopic quantities. We begin
with the comparison of dynamic viscosity η′(ω) of a
network model consisting of “bead and spring” Rouse
chains and of a coarse-grained network model. The
coarse-grained model of a cubic network consists of
junctions with the friction constant ς and Gaussian
springs with the elasticity constant K, which connect
the junctions into a spatial network structure.1,3,4,9,12,14,15

The elasticity constant of a spring corresponds to the
elasticity of a multisegmental Rouse chain between
neighboring junctions. The friction constant of a junction
corresponds to the friction of chain halves directly
attached to the junction. The relaxation times of the
coarse-grained model of a cubic network, which are
manifested in mechanical relaxation, are given by9,12

where τmin ) ς/24K is the minimum relaxation time of
the coarse-grained network model. The relaxation times
of the coarse-grained network are determined only by
the interchain wave vector θB ) (θ1, θ2, θ3) describing
the phase shift between network cells (eq 24). The
characteristic times of a simplified network model and
a more realistic network model considered in the paper
are related to each other by the following equation:1

The dynamic viscosity η′CG(ω) of a coarse-grained net-
work under an external stress producing a longitudinal
velocity gradient in effective viscous medium is given
by9

In Figure 6 we plot the dynamic viscosity η′(ω) of a
network of “bead and spring” Rouse chains, the contri-
bution from interchain relaxation processes to η′(ω) of
this network model, and the dynamic viscosity of a
coarse-grained network model. The dynamic viscosity
of the coarse-grained network is found to be very close
to the contribution from interchain motions to viscosity
η′(ω) of a more realistic network model. Apart from the
interchain relaxation processes, the small-scale intra-
chain motions also provide considerable contribution to
dynamic viscosity η′(ω) of a polymer network in the low-
frequency region (see previous section). Therefore, the

total dynamic viscosity of a network of “bead and spring”
Rouse chains cannot be described only in terms of the
coarse-grained network model even in the region of
large-scale interchain relaxation. Hence, there is a
certain difference between the macroscopic and local
dynamic characteristics of a polymer network as regards
the possibility of the above simplified description using
the coarse-grained network model only.

It is also interesting to compare the dynamic viscosity
η′(ω) of a polymer network and a melt consisting of un-
cross-linked chains at the same number of chains per
unit volume νchain. In the case of a regular cubic network,
the quantity νchain is related to the number of cross-links
per unit volume ν by a simple equation: νchain ) 3ν. The
dynamic viscosity of a polymer melt has been studied,
for example, in ref 5 for the case of a shear velocity
gradient of the effective viscous medium. In the case of
a longitudinal velocity gradient, the dynamic viscosity
η′(ω) of the melt of un-cross-linked chains having the
same lengths as in a network may be presented in the
form (in the Rouse-like region)

Here τ(ψ) are the relaxation times of a “bead and spring”
Rouse chain consisting of (n + 1) subchains. They are
given by eq 20 with wave vector ψ ) kπ/(n + 1) where
k ) 1...n (see, for example, refs 2, 5, and 8). One can
see from Figure 7 that the dynamic viscosity η′(ω) of
the melt is close to the contribution from intrachain
relaxation processes to dynamic viscosity η′(ω) of a
polymer network. The dynamic viscosity η′(0) of melt
at zero frequency is found to be about two times smaller
than that of a network at the same number of chains
per unit volume (νchain). In the high-frequency region (ω
. 1/τchain), the polymer network behaves like a melt
consisting of un-cross-linked chains (Figure 7).

One can conclude that the frequency dependence of
dynamic viscosity η′(ω) of a polymer network may be
described to a good approximation in the low-frequency
region (ω , 1/τchain) by a coarse-grained network model
and in the high-frequency region (ω . 1/τchain) by a melt
of un-cross-linked macromolecules having the same
molecular weight as polymer chains in the network. It

τ(θB) )
6τmin

(3 - cos θ1 - cos θ2 - cos θ3)
(37)

τmin ) (n + 1)2τ0 (38)

η′CG(ω) ) ηm + 3νkBT[ 1

N3
∑

θB

τ(θB)

1 + (ωτ(θB))2] (39)

Figure 6. Dynamic viscosity η′(ω) of a network consisting of
“bead and spring” Rouse chains (solid line), interchain contri-
bution to dynamic viscosity of this network (lines with open
circles (O)), and dynamic viscosity η′(ω) of a coarse-grained
network (lines with solid circles (b)). Here n ) 20.

η′melt(ω) ) ηm + 3νchainkBT∑
ψ

τ(ψ)

1 + (ωτ(ψ))2
(40)

Macromolecules, Vol. 33, No. 17, 2000 Properties of Meshlike Polymer Networks 6585



is essential that the contribution from intrachain re-
laxation processes to the total dynamic viscosity of a
polymer network cannot be omitted even in the low-
frequency region. This intrachain contribution practi-
cally does not change with frequency at sufficiently low
frequencies (Figure 5) and is shown to be close to the
dynamic viscosity at zero frequency of the melt of un-
cross-linked macromolecules. This means a certain
“redefinition” of the concept of an effective viscous
medium: now it depends on the scale of network
motions. For the motions having characteristic scale
smaller than the average distance between cross-links,
the viscosity η of an effective viscous medium is as-
sumed to be equal to that of a melt consisting of polymer
monomers. It is quite analogous to the approach devel-
oped for polymer melts.5 For larger scale of network
motions, the viscosity of the effective medium of a
polymer network may be assumed to be close to that of
a melt of polymer chains not connected in a spatial
network structure.

3.4. Problem of Hydrodynamic Interactions. The
results of this paper were obtained in terms of the
dynamic network model in which the hydrodynamic
interactions between the network elements and effective
viscous medium are neglected. The network elements
move against the viscous medium which is perturbed
by a longitudinal velocity gradient. It is essential that
we need the velocity gradient only to excite the me-
chanical relaxation spectrum, the relaxation times
themselves correspond to those of a network system at
a zero velocity gradient. If the hydrodynamic interac-
tions are taken into account, the situation becomes more
complicated. When the scales of motions smaller than
the distance between neighboring cross-links are con-
sidered, the dynamic behavior of network chains is very
close to that of un-cross-linked polymer chains in the
melt. Therefore, the results obtained in the theory of
dynamics of polymer melts can be used for the intra-
chain relaxation of polymer networks. In the polymer
melt the motion of a single chain is considered as the
motion in an effective medium which includes the effect
of the other polymer chains (at least, in the Rouse-like
region).5,16 The viscosity ηm of this medium is assumed
to be close to that of a liquid consisting of polymer
monomers. On a small scale, the velocity profile V(r) of

the effective viscous medium at a distance r from a given
chain segment decreases as 1/ηmr according to the Oseen
formula. On a large scale, the velocity profile obeys the
macroscopic hydrodynamics, i.e., the velocity of medium
should decrease as 1/ηr where η is the macroscopic
viscosity of melt. If ηm , η the velocity field falls rapidly
on the scale with an order of magnitude of tens of
segments, and the so-called hydrodynamic screening
takes place.5,16,17 As a result of the hydrodynamic
screening, the dynamic behavior of a single polymer
chain in the melt becomes Rouse-like. Hence, for the
relaxation times corresponding to the intrachain mo-
tions of a network, the hydrodynamic interactions are
negligible.

If the scale of network motions larger than the
distance between cross-links is considered, the contribu-
tion of the hydrodynamic interactions becomes notice-
able as compared with that of stochastic Brownian
forces. The hydrodynamic interactions are controlled by
viscosity close to that of a melt of un-cross-linked chains
(V(r) ∼ 1/ηr). Thus, for large-scale collective motions of
network chains the hydrodynamic interactions between
the network and the effective medium may be impor-
tant. To study this effect, a simplified coarse-grained
network model describing only the collective interchain
dynamics may be used. A bulk cross-linked polymer as
a whole is an incompressible system, i.e., its volume and
average distances between cross-linked are fixed. One
can assume that an effective viscous medium has the
properties of a real liquid, i.e., it represents an incom-
pressible medium. Therefore, the combined consider-
ation of the interacting network and mobile incompress-
ible medium can be carried out. This approach has been
developed by the authors in refs 18 and 19. The
resulting relaxation spectrum is shown to depend
considerably on the compressibility of a network com-
ponent of the “network and incompressible medium”
system.18,19 The network elements (junctions in the case
of a coarse-grained network model) do not include all
the degrees of freedom of an incompressible bulk
polymer. Therefore, the network component may be
either compressible or incompressible. If a network
component itself is compressible, the set of relaxation
times τ(θB) excited in the “network and medium” system
is found to be the same as that of a network system in
which the hydrodynamic interactions are absent (see eq
37). If the network component of the “network and
medium” system is incompressible, another set of
relaxation times τ*(θB) appears:

Here τ(θB) are the relaxation times corresponding to the
compressible network component (eq 37), and τ** )
h0η/K where η is the viscosity of an effective viscous
medium, K is the elasticity constant of a Gaussian
spring between cross-links of a coarse-grained network
model, and h0 is the average distance between neigh-
boring cross-links. This spectrum is restricted by the
finite maximum relaxation time equal to τ**. Moreover,
one can show that it is a rather narrow spectrum. The
relaxation spectrum of this type corresponds to the
cooperative motion of the network and the medium. The
effective viscous medium is partly carried along by the
motion of network elements so that for large-scale
motions (|θ| f 0) the network and the medium move in

Figure 7. Dynamic viscosity η′(ω) of a network consisting of
“bead and spring” Rouse chains (solid line), intrachain con-
tribution to dynamic viscosity of this network (lines with solid
squares (9)), and dynamic viscosity η′(ω) of melt consisting of
un-cross-linked chains (lines with open squares (0)). Here n
) 20.

1
τ*(θB)

) 1
τ(θB)

+ 1
τ**

(41)
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synchronizm. A more detailed discussion of the hydro-
dynamic interactions in polymer networks may be found
in refs 18 and 19.

To conclude, one can say that the hydrodynamic
interactions do not influence the relaxation times and
viscoelastic characteristics of a polymer network on the
scales of motions smaller than the distance between
neighboring cross-links. For greater scales the hydro-
dynamic interactions may be negligible if the network
component itself of the “network and medium” system
is compressible. This means that there is at least one
situation when the results obtained hold for a network
system in which the hydrodynamic interactions are
taken into account. If the network component itself is
incompressible, another very narrow relaxation spec-
trum appears. The influence of this spectrum on dy-
namic moduli of a polymer network will be a subject of
our further publications.

4. Conclusion
In this work we have discussed the features of

viscoelastic dynamic behavior of polymer networks,
which are related to the existence of a spatial network
structure. A simple dynamic model of a regular network
consisting of “bead and spring” Rouse chains has been
considered. This regular network model allows us to
investigate the effect of connectivity of all the network
chains with each other and the influence of this con-
nectivity on various viscoelastic characteristics of a
polymer. In particular, the comparative role of small-
scale intrachain motions of segments and specific net-
work interchain motions has been studied for the
dynamic modulus and viscosity of a polymer network.
A certain simplified description of macroscopic visco-
elastic properties of cross-linked polymers is proposed.
In addition, the problem of long-range hydrodynamic
interactions in polymer networks was briefly discussed.
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