
JOURNAL OF CHEMICAL PHYSICS VOLUME 119, NUMBER 14 8 OCTOBER 2003
Dynamics of dendrimer-based polymer networks
A. A. Gurtovenko
Institute of Macromolecular Compounds, Russian Academy of Sciences, Bolshoi Prospect 31, V.O.,
St. Petersburg, 199004 Russia; Laboratory of Physics and Helsinki Institute of Physics,
Helsinki University of Technology, P.O. Box 1100, FIN-02015 HUT, Finland; and Theoretische
Polymerphysik, Universita¨t Freiburg, Hermann-Herder-Str. 3, D-79104 Freiburg, Germany

D. A. Markelov
Faculty of Physics, St. Petersburg State University, Ulyanovskaya Str. 1, Petrodvorets, St. Petersburg,
198504 Russia

Yu. Ya. Gotlib
Institute of Macromolecular Compounds, Russian Academy of Sciences, Bolshoi Prospect 31, V.O.,
St. Petersburg, 199004 Russia

A. Blumena)

Theoretische Polymerphysik, Universita¨t Freiburg, Hermann-Herder-Str. 3, D-79104 Freiburg, Germany

~Received 5 June 2003; accepted 15 July 2003!

We present a theoretical study of polymer networks, formed by connecting dendritic building blocks
~DBB’s!. We concentrate on the Rouse dynamics of such networks and perform our study in two
steps, considering first single generalized dendrimers~GD’s! and then networks formed by such
DBB’s. In GD’s the functionalityf of the inner branching points may differ from the functionality
f c of the core. The GD’s cover wide classes of macromolecules, such as the ‘‘classical’’ dendrimers
( f c5 f ), the dendritic wedges (f c5 f 21), and the macromolecular stars (f c.2, f 52). Here we
present a systematic, analytic way which allows us to treat the dynamics of individual GD’s. Then,
using a general approach based on regular lattices formed by identical cells~meshes! we study the
dynamics of GD-based polymer networks. Using analytical and numerical methods we determine
the storage and loss moduli,G8(v) and G9(v). In this way we find that the intradendrimer
relaxation domain ofG8(v) becomes narrower whenMcr , the number of connections between the
neighboring DBB’s, increases. This effect may be understood due to the exclusion of the longest
DBB relaxation times from the spectrum of the network, given that the additional connections
hinder the mobility of the peripheral DBB branches. We expect that such effects may be readily
observed through appropriate mechanical experiments. ©2003 American Institute of Physics.
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I. INTRODUCTION

Dendrimers, being perfectly symmetrical, branch
structures have attracted much attention during the past
decades.1–3 The dendrimers display a series of unique phy
cal and chemical properties which strongly depend on th
generation~or, equivalently, on their size!. Essentially, the
treelike dendrimer topology leads to a very fast incre
~which depends exponentially on the generation! of the num-
ber of peripheral groups. Therefore, among a plethora of
tential applications, dendrimers seem to be ideal candid
for serving as building blocks in the construction of ne
types of hybrid polymer materials with well-structured, com
plex architectures. As examples, one can mention here
chain dendritic polymers consisting of linear chains w
pendant dendritic groups4–7 and polymer networks bearin
dendritic wedges in the middle of network strands.8

In this paper we study theoretically one particular cla
of polymer networks, namely structures made from dendr

a!Author to whom correspondence should be addressed. Electronic
blumen@physik.uni-freiburg.de
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building blocks~DBB’s!. Recently such networks have a
tracted much attention.9–12 The connections between th
DBB’s can be permanent~one has then permanently cros
linked networks! as well as transient~which leads to physica
networks!. Such DBB-based polymer networks are of spec
interest, because they exemplify materials with two levels
structural organization.13 Here we will study the dynamica
properties of permanently cross-linked DBB-based netwo
using approaches previously developed by some of us.14,15

We focus on the free-draining Rouse description.16,17

Such an approach is definitely simplified; it does not ta
into account the excluded volume and the hydrodynam
interactions. Nevertheless, as we have shown in our pr
ous study of side chain dendritic polymers,18 it allows us
to capture the essential features of the viscoelastic mech
cal behavior, features which reflect the complex underly
topology.

The paper is organized as follows: Section II describ
the theoretical approach used here, which centers on ev
ating the storage modulus,G8(v), and the loss modulus
G9(v); these dynamical quantities are readily monitor
through viscoelastic experiments. The following three s
il:
9 © 2003 American Institute of Physics
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tions are devoted to the study of the specific systems we
interested in. We proceed in two steps: In Sec. III we c
sider the Rouse dynamics of single~unconnected! general-
ized dendrimers~GD’s!. Here we extend the theoretical a
proach developed previously for ‘‘classical’’ dendrimers19

and for dendritic wedges18 to wider classes of dendritic
structures, the GD’s; in GD’s the functionalities of the co
and of the inner branching points are independent of e
other. In Sec. IV we recall a general method for determin
the dynamics of networks consisting of identical ce
~meshes! of arbitrary internal structure, cells which are co
nected into regular~say, cubic or square! lattices. In Sec. V
we apply this approach to GD-based polymer networks,
study in particular how the number of connections betwe
neighboring DBB’s affects the dynamics of the resultin
global network. In Sec. VI we end the paper with a sh
summary and conclusions.

II. THEORETICAL MODEL

As stressed, we develop our study of the dynamics
GD-based polymer networks in two steps: First, we focus
single ~unconnected! GD’s; then we study networks forme
from such GD’s, see Fig. 1 as an example. We model b
the single GD and also the GD-based polymer networks
representing their monomers through beads, attached to
other by elastic springs with elasticity constantK. In this way
we treat the dynamics of the systems under study in
framework of the so-called generalized Gauss
structures20–22 ~GGS’s!. The GGS’s represent the extensio
of the classical Rouse model16,17 for linear polymer chains to
systems of arbitrary topology. For simplicity, we will let a
beads of the GGS be subject to the same friction constaz
with respect to the effective viscous medium~the solvent!.

FIG. 1. Examples for the polymer systems under study. Shown are~A! a
single dendrimer and~B! the first connecting steps of four such dendrime
in the building of a 2D polymer network.
Downloaded 30 Sep 2003 to 130.233.204.73. Redistribution subject to A
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Clearly, we aim to have a very simple description; note t
the GGS approach allows extensions, such as having b
of different kinds differ in their friction constants.23

The Langevin equation of motion for thel th bead of the
GGS reads then

z
dRl~ t !

dt
1K (

m51

Ntot

AlmRm~ t !5zwl~ t !, ~1!

whereRl(t) is the position vector of thel th GGS bead,A
5$Alm% is the connectivity matrix of the given GGS~here:
GD and GD-based networks!, andNtot is the total number of
beads~monomers! in the GGS considered. In Eq.~1! the
nondiagonal elementAlm equals ~21! if the l th and mth
beads are connected, and 0 otherwise; the diagonal ele
Amm equals the number of bonds emanating from themth
bead. The thermal noisezwl(t) is assumed to be Gaussia
with ^wl(t)&50 and ^wla(t)wmb(t8)&52kBTd lmdab

3d(t2t8)/z ~herea andb denote thex, y, andz directions!.
Now, a typical macroscopic way to test the response

polymeric media consists in measuring the complex~shear!
modulusG* (v), which sets in under the influence of a
external harmonic strain field;24 this field acts on the polyme
through the solvent and produces stress. The theoretica
termination of G* (v) proceeds along classical lines fo
Rouse-type models, see, e.g., Refs. 17 and 25. In this w
for single GGS’s~this corresponds to very dilute solution!
the storage modulusG8(v) and the loss modulusG9(v)
@these are the real and the imaginary parts ofG* (v)] are
given by17

G8~v!5C
1

Ntot
(
i 52

Ntot ~vt0/2l i !
2

11~vt0/2l i !
2 ~2!

and

G9~v!5C
1

Ntot
(
i 52

Ntot vt0/2l i

11~vt0/2l i !
2 . ~3!

In Eqs.~2! and~3! C equalsnkBT, wheren is the number of
beads~monomers belonging to polymers! per unit volume in
the system~macromolecules and solvent! under study; thel i

are the eigenvalues of the connectivity matrixA of the given
GGS, andt05z/K is the characteristic relaxation time. W
have chosen the unique, vanishing eigenvalue of the GG
be l1 , i.e., we setl150. Now l1 corresponds to the trans
lation of the system as a whole, and it does not contribute
the moduli; hence the sums in Eqs.~2! and ~3! start with i
52. Note also the factor 2 in the relaxation timest i

5t0/2l i of Eqs.~2! and ~3!; this factor arises from the sec
ond moment of the displacements involved in computing
stress, and we refer to Ref. 17 for a detailed derivation of
fact.

It is noteworthy that even for concentrated solutions,
long as entanglement effects are still negligible~this holds
for polymers of low molecular weight!, G8(v) and G9(v)
continue to follow the structure of Eqs.~2! and~3!, the only
difference24 being a change in the prefactorC. Given that we
are mostly interested in the slopes ofG8(v) andG9(v), we
will present in the following all our results in terms of th
reduced storage and loss moduli,@G8(v)# and @G9(v)#;
IP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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these are obtained by settingC51 in Eqs.~2! and~3!. Note
also the fundamental fact that the eigenfunctions of the c
nectivity matrix of the GGS do not appear in Eqs.~2! and
~3!; in the Rouse GGS scheme the shear modulusG* (v)
depends only on the eigenvalues. Thus, in order to be ab
evaluateG8(v) andG9(v), it suffices to determine the ei
genvaluesl i ~or the relaxation timest i) only. This simplifies
considerably the solution of the dynamical problem for t
GD systems we are interested in.

III. SINGLE GENERALIZED DENDRIMERS

We begin by considering the Rouse dynamics of sin
GD’s. Now the dendrimer problem has encountered m
theoretical interest, both in what analytical works on t
equilibrium and dynamic properties are concerned,26–38 as
well as in terms of efforts based on comput
simulations.39–43 Most of the existing analytical studies o
the dynamics of polymers use the Rouse or the Zimm
scription and require at a certain stage the diagonalizatio
the corresponding connectivity matrices by means
analytical26,28,31 or numerical methods.32–34,37,38 Now, for
very large structures@largeNtot in Eq. ~1!# numerical diago-
nalization methods are extremely time consuming; given
all the eigenvalues are needed, today’s reasonable limi~in
terms of computer time and accuracy! is aroundNtot.104.
Also, depending on the structure, the direct analytical dia
nalization of the connectivity matrices is in general~if at all
possible! very cumbersome. Recently, we proposed to use
dendrimer-type structures an approach which allows us
find the eigenvalues~and the corresponding relaxation time!
in a more analytically minded way.18,19The method was firs
developed for ‘‘classical’’ dendrimers19 ~the functionality of
a core is the same as that of the inner beads!, and then ap-
plied to dendritic wedges18 ~a wedge has one main branc
less than the classical dendrimer!.

However, more general structures are possible, e.g
which the functionality of the inner branching points and t
functionality of the core differ.35,36 In this paper we extend
our analytical approach to finding the eigenvalues to th
more general cases. Now, a generalized dendrimer, GD
characterized by the functionality of the core,f c , by the
functionality of the other inner branching points,f, and by
the number of generations,g. Such GD’s represent a whol
series of structures, which include the classical dendrime19

( f c5 f ) and the dendritic wedges18 ( f c5 f 21) previously
considered. Furthermore, also star polymers are GD’s;
star polymersf 52 and f c is the number of arms.

Exemplarily, we depict in Fig. 2 a GDwith f c54 and
f 53. Given that the generation zero,g50, consists of the
core ~the central bead! of the GD, Fig. 2 shows the GD a
generationg53. Now, a GD with givenf c , f, andg consists
of Nd monomers~beads!, where

Nd5 f c

~ f 21!g21

f 22
11 for f >3 ~4!

and

Nd5~ f cg11! for f 52. ~5!
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In order to find analytically the eigenvalues of such
GD, it is important, as in our former studies,18,19 to focus on
the underlying topological symmetry; in fact, taking th
symmetry already at a very early stage into account, sim
fies considerably the analytical procedure. Fundamental h
is to note that the eigenmodes of the GD belong to t
general classes: Class~i! involves normal modes in which
the central core is mobile, class~ii ! consists of normal mode
with an immobile central core.

A method which allows to determine analytically the e
genvalues and eigenfunctions of GD’s is presented in
Appendix; the procedure is similar to our work in Refs. 1
and 19. Summarizing the results of the Appendix, norm
modes with a mobile core, class~i!, have eigenvalueslk of
the form

lk5 f 22Af 21 cosck , ~6!

see Eq.~A8!, theck obeying Eq.~A11!:

sin~g11!ck5
f 2 f c21

Af 21
singck . ~7!

When the inequality of Eq.~A12!, (g11)/g.u f 2 f c

21u/Af 21, holds, Eq.~6! leads to a total ofg distinct so-
lutions. Otherwise, i.e., for (g11)/g<u f 2 f c21u/Af 21,
one has only (g21) ‘‘spatially periodic’’ normal modes, see
Eqs. ~6! and ~7!. In this case there appears one addition
spatially exponential normal mode. There are now two ca
to consider for the spatially exponential normal mode. Wh
( f 2 f c21) is positive, the new eigenvalue reads

L5 f 22Af 21 coshc, ~8!

in which c fulfills

sinh~g11!c5
f 2 f c21

Af 21
sinhgc; ~9!

see Eqs.~A14! and ~A15!. In the opposite case, whe
( f 2 f c21) is negative, one has another kind of spatia
exponential normal mode, whose eigenvalue is given by

FIG. 2. A generalized dendrimer~GD! of third generation (g53) which has
f c , the core functionality equal to 4, andf, the functionality of the inner
branching points equal to 3.
IP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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L5 f 12Af 21 coshc, ~10!

wherec is determined from

sinh~g11!c52
f 2 f c21

Af 21
sinhgc; ~11!

see Eqs.~A17! and ~A18!. Moreover, the casef 2 f c2150
need not be considered here, since for it (g11)/g.0 always
holds; it corresponds to dendritic wedges, whose class~i!
modes are all spatially periodic.

We end the considerations to class~i! by noting that the
eigenvaluel150 also belongs to it;l1 corresponds to the
displacement of the dendrimer as a whole, under the in
ence of fluctuating forces. Note that the (g11) eigenvalues
found for the normal modes of class~i! are nondegenerate
the situation is in general distinct for the modes of class~ii !,
as we will show in the following.

Before doing this, we first stop to remark that GD’s ha
in general in class~i! both spatially periodical and spatially
exponential normal modes. This differs from the situation
classical dendrimers19 and for dendritic wedges,18 where for
class ~i! only spatially periodic normal modes exist. It
namely straightforward to verify that for dendrimers,f c5 f ,
and for dendritic wedges,f c5( f 21), the inequality of Eq.
~A12! is automatically fulfilled. For GD’s it is important to
notice that in class~i! the eigenvalue connected to a spatia
exponential normal mode~when it exists! does not decreas
strongly with increasingg, see the Appendix; in class~i! the
minimal, nonvanishing eigenvalue is almost independen
Nd ~or, for that matter, ofg!. Hence, as found earlier for th
classical dendrimers,19,31 the normal modes which determin
the long time behavior belong to class~ii !.

The normal modes of class~ii ! have an immobile core
We remark that for this class the eigenvalues and the st
ture of the eigenfunctions are the same as for the class
dendrimers19 and for the dendritic wedges.18 For f and g
fixed, changes inf c ( f c>2) lead only to changes in th
degeneracy of the eigenvalues. In the special case when
the core is immobile, the eigenvalueslk are again given by
Eq. ~6! but theck fulfill now

sin~g11!ck5Af 21 singck ; ~12!

see Eq.~A25!. Again we have a situation in which the num
ber of distinct solutionsck depends on a relation betwee
the parameters of the system under study. Thus Eq.~12! pro-
vides a total ofg distinct solutions if (g11).Af 21g. Note
that this condition is fulfilled only in three cases, namely f
( f 53;g51), for (f 53;g52), and for (f 54;g51). In all
other cases, i.e., for (g11)<Af 21g, Eqs.~6! and~12! give
only (g21) solutions. Then, an additional solution appea
leading to an eigenvalue of the form of Eq.~8!, with c being
given by Eq.~A27!:

sinh~g11!c5Af 21 sinhgc. ~13!

In contrast to the class~i! normal modes, this eigenvalue
( f c21) times degenerate.

In general, the GD motion may be such as to leave la
groups of noncore beads immobile; then the eigenvaluelk

are still given by Eq.~6!, with ck obeying Eq.~A30!:
Downloaded 30 Sep 2003 to 130.233.204.73. Redistribution subject to A
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sin~g112n!ck5Af 21 sin~g2n!ck . ~14!

Here 0,n,(g21), and n denotes the last generation
which all beads are immobile. As in the case of an immob
core, Eq.~14! has (g2n) distinct solutions if (g2n11)
.Af 21(g2n). Otherwise, when (g2n11)<Af 21(g
2n), Eq. ~14! has only (g2n21) solutions. Then one ad
ditional solution appears; it has the form of Eq.~8!, where
now c is

sinh~g2n11!c5Af 21 sinh~g2n!c; ~15!

see Eq.~A32!. Common to all these eigenvalues is their d
generacy, which equalsf c( f 21)(n21)( f 22), where 0,n
,(g21). Finally, for n5(g21) one has the f c( f
21)(g22)( f 22)-fold degenerate eigenvaluel51; it corre-
sponds to normal modes which involve only periphe
beads.

To conclude this part, it is instructive to stress that t
existence of normal modes of two kinds, of spatially period
kind and of spatially exponential kind, can be readily vis
alized; spatially periodic normal modes are internal mod
inside the GD’s sub-branches. For nontrivial GD’s (f .2),
their eigenvalues are bound from below by (f 22Af 21),
see Eq.~6!, a value independent ofg. In contrast, spatially
exponential normal modes correspond to the motion
whole sub-branches against each other and may have
small, nonvanishing eigenvalues; such eigenvalues domi
the dynamics at long times. As discussed in the Appen
the minimal, nonvanishing eigenvalue of the GD,lmin , cor-
responds to a class~ii ! normal mode; for largeg one has
approximately

lmin.
~ f 22!2

~ f 21!~g11! , ~16!

see Eq.~A37!. In this respect the situation is identical to th
found for dendritic wedges18 and classical dendrimers,19

given that for all GD’s with fixedf andg the class~ii ! normal
modes are the same, see Appendix.

These findings allow us to study the dynamic propert
of GD’s in the GGS-framework of Sec. II, given that@based
on Eqs.~6!–~15!# we can readily computeall the GD eigen-
values~relaxation times! for arbitrary f c , f, andg. That we
indeed obtain in this wayall the eigenvalues is also shown
the Appendix.

As an illustration, we plot in Fig. 3 the storage
@G8(v)#, and the loss,@G9(v)#, moduli of GD’s with f 53,
g54, and varyingf c ; in Fig. 3 f c ranges from 1 to 10.
Remarkable for all curves is that they do not show scal
~i.e., a linear dependence in the double logarithmic plot
Fig. 3! in the intermediate frequency domain. In this regi
G8(v) and G9(v) reveal the underlying topological struc
ture. Going fromf c51 to f c510 influences mainly the low-
frequency form of the curves, given that the contribution
the maximal relaxation time of the GD~because of the de
generacy! increases withf c .
IP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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IV. NETWORKS BUILT FROM SUBSTRUCTURES
„CELLS …: THE MODEL

Now we turn to a formalism which allows us to stud
the dynamics of networks built from topologically comple
substructures. In the next section we will apply this meth
to regular lattices built from GD’s. We start by remarkin
that the study of cross-linked polymer chains which th
form regular lattices has a long history;44–48 treating cross-
linked dendritic structures is, however, of quite rece
interest.8,18 Before considering particular networks based
GD’s, in this section we recall a general approach develo
by some of us14,15 to treat the dynamics of lattices formed b
identical cells ~substructures!. In former works14,15 these
cells consisted themselves of subunits; here we let the c
have an arbitrary architecture, and require only that they
topologically identical to each other.

We start our presentation based on a~topologically!
three-dimensional cubic lattice; the reduction to lower
mensions and the extension to higher topological dimens
are quite straightforward. The elementary cubic cell of
lattice is denoted by a three-component indexV5~a,b,g!
wherea, b, andg range from 1 toN. We assume that such
cell contains s beads, which we number by the inde
j P$1,¯,s%. The whole network consists then ofsN3 beads,
numbered by (j ,V)[( j ,a,b,g). As before, all the beads ar
connected to their neighbors by means of elastic spri
which have the same elasticity constantK.

In this case the determination of the eigenvalues of
connectivity matrixA simplifies considerably, since the ela
tic term in Eq.~1! reads:14,15

(
m51

Ntot

AlmRm~ t !5(
i 51

s

(
V8

Aj Vi V8Ri V8~ t !

5(
i 51

s

Aj Vi VRi V~ t !

1(
i 51

s

(
V8

V8ÞV

Aj Vi V8Ri V8~ t ! ~17!

FIG. 3. Reduced storage modulus@G8(v)# and loss modulus@G9(v)# plot-
ted in double logarithmic scales vs the reduced frequencyvt0 . Shown are
results for GD’s withf 53 andg54. The functionality of the core,f c , takes
the values 1, 2, 3, and 10.
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where one letsl→( j ,V) and m→( i ,V8). Due to obvious
symmetries, one now sets in Eq.~17! Bji

(int)[Aj Vi V and
Bji

(ext)(D)[Bji
(ext)(V2V8)[Aj Vi V8 . This leads to15

(
m51

Ntot

AlmRm~ t !5(
i 51

s

Bji
~ int!Ri V~ t !

1(
i 51

s

(
D

Bji
~ext!~D!Ri V2D~ t !, ~18!

whereD5V2V8 is the relative distance between the latti
cellsV andV8, measured in units of number of cells. In E
~18! the matrixB(int)5$Bji

(int)% is the connectivity matrix in-
side a given cell consisting ofs beads. On the other hand, th
matricesB(ext)(D)5$Bji

(ext)(D)% describe the intercell con
nections: In them the nonzero elementsBji

(ext)(D) equal21;
they indicate that beadj of cell V and beadi of cell
V85V2D are connected by a bond. If one connects
cells in the spirit of Fig. 1, each elementary cell is direc
connected to its nearest-neighbor cells only; for a topolo
cally cubic lattice theD are then restricted to the set$~1, 0,
0!, ~21, 0, 0!, ~0, 1, 0!, ~0, 21, 0!, ~0, 0, 1!, ~0, 0,21!% only.

As discussed in Refs. 14 and 15, the procedure is c
in spirit to that encountered in the study of crystals;49–51 the
mathematical structure of the theory is identical, but t
physical situation is not. In particular, the polymer network
in no way assumed to be translationally invariant.14,15 For-
mally now, the ansatz

Rj V~ t ![Rj abg~ t !5 (
k1 ,k2 ,k3

Cj k exp~ i @k1a1k2b1k3g#!

3exp@2l~k!t/t0#, ~19!

solves the problem. Herei denotes the imaginary unit,t0

5z/K is the characteristic relaxation time, theCj k are con-
stants, and thek5(k1 ,k2 ,k3) obeyki52pmi /N, where the
mi are integers with 0<mi<(N21) for i 51, 2, and 3.
Again, one should stress that in Eq.~19! the indexk simply
counts the eigenvalues~modes!, and is not related to a recip
rocal wave vector. Setting

Bjl ~k!5Bjl
~ int!1(

D
Bjl

~ext!~D!exp~2 ik"D! ~20!

the Langevin equation of motion, Eq.~1!, reads now14,15

l~k!Cj k5(
l 51

s

Bjl ~k!Clk . ~21!

The matricesB(k)5$Bjl (k)% carry all the information abou
the connectivity~inter- and intracell!. Since there areN3 k
values, there areN3 different B(k) matrices. The symmetry
helped to simplify the problem: instead of having to diag
nalize A, which is a (sN33sN3) matrix, one has now to
diagonalizeN3 different (s3s) matrices.15

V. DENDRIMER-BASED LATTICES

Now we apply the general approach of the previous s
tion to our system of interest, and treat topologically regu
lattices built from GD’s, see for instance Fig. 1~B!. We hence
assume that the dendritic building blocks~DBB’s! are con-
IP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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nected with each other in a regular way: We denote byMcr

the number of connections stemming from each DBB,
vided by the number of its neighboring DBB’s. As an e
ample, in Fig. 1~B!, given the two-dimensional pattern of th
lattice, one hasMcr54/451.

The caseMcr51 corresponds to a slightly connecte
GD-based network. Values ofMcr larger than unity are
readily attained. For this we center on the peripheral be
since they are most prone to serve as connections, given
their functionality inside the GD is less thanf. A GD with
given f c , f, andg hasNper peripheral beads, where

Nper5 f c~ f 21!~g21!. ~22!

In a simple hypercubic geometry each lattice site has 2dlat

nearest neighbors, wheredlat is the dimensionality of the
lattice. Setting n for the largest integer not exceedin
(Nper/2dlat), one can then use, in a symmetric way, up ton
beads to connect a DBB to one of its neighbors.

In order to apply our general approach we ha
to specify the matricesB(int)5(Bjl

(int)) and B(ext)(D)
5(Bjl

(ext)(D)), see Eq.~20!, to the problem at hand. Focus
sing on Fig. 1~B!, a link is established between two GD’s b
the elimination of one bead, say, through a disproporti
ation reaction. Evidently, other cross-linking procedures
possible, e.g., through the creation of new bonds. Since
treated such situations in previous work, we prefer to c
sider here the case of Fig. 1~B!. We also stay in the frame
work of a homopolymer model~all beads in the whole net
work system have the same friction constants!, although the
copolymer case may be also considered.23 Hence, due to the
newly createdMcr connections between each pair of neig
boring cells, each such cell hasMcrdlat beads less than th
precursor GD withNd beads, Eq.~4!. Such a DBB cell con-
tains thuss5Nd2Mcrdlat beads, and the matrixB(int) can be
obtained from that of the original GD by the removal
these Mcrdlat beads. Moreover, given that there are 2dlat

nearest neighbors to each DBB cell, there are 2dlat nonvan-
ishing B(ext)(D); each of these matrices containsMcr non-
zero elements equal to~21!; see the previous sections fo
details.

Now we are ready to perform numerical calculations
networks consisting of DBB’s; for this we follow our gener
scheme discussed in Sec. IV. An interesting question
which we will focus is in how farMcr , the number of con-
nections between pairs of neighboring DBB’s, affects
dynamics of the network.

We start at first with DBB’s connected into a two
dimensional~2D! square lattice. Here it is worthwhile to re
call that such a network is two dimensional only in a top
logical sense; dynamically, the network moves in the
Cartesian space like a fishing net in water. An obvious qu
tion is then in how far our results are influenced by t
choice of the lattice; we will make some comparisons w
3D lattices at the end of this section.

We start with a fully symmetrical situation so that th
symmetry of the DBB matches that of a 2D lattice. Such
situation is, for instance, obtained whenf c , the functionality
of the core of the underlying GD, is taken to be 2dlat , here
thus f c54. In Fig. 4 we plot the reduced storage modu
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@G8(v)# for GD’s with f c54, f 54, andg53, which are
connected into a~20320! square lattice. We letMcr , the
number of connections between neighboring DBB’s, va
such thatMcr equals 1, 3, 5, and 9. Furthermore, we ta
care that the connections obey the symmetry requirem
they are then regularly distributed with respect to the und
lying GD. Note that in our case hereMcr59 corresponds to
the situation in whichall peripheral beads of the underlyin
GD participate in connections, so that there are no dang
bonds at all. Distinct from it is the caseMcr51, in which the
network is only slightly connected. Also presented in Fig
is @G8(v)# for the underlying GD. Starting with the isolate
GD, one has a plateau at very high frequencies and a te
nal,v2-type behavior at very low frequencies. The frequen
region in between is typical for dendrimers: in the doub
logarithmic scales of Fig. 4 the curve has a logarithmic-ty
behavior.37,38 Going now to the lattice case, we start wi
Mcr51. The curve at rather high frequencies reveals then
isolated GD behavior of@G8(v)#. This is followed by a
region with a power-law decay,@G8(v)#;v, typical for 2D
lattices.46,52,53Finally, as it is typical for GGS’s of finite size
one again reaches at very low frequencies the termi
v2-decay pattern of@G8(v)#. In Fig. 4 this terminal domain
is located at log(vt0),23.

IncreasingMcr leads to a systematic narrowing of th
high-frequency region, in which the GD behavior is evide
the curves for largerMcr depart earlier from the curve of th
single GD. As we will see in the following, this effect has
generic character, i.e., it does not depend significantly on
DBB parametersf c , f, andg, nor on the particular type o
regular lattice into which the DBB’s are connected. This c
be explained as follows: The long relaxation times of t
single GD are controlled by large amplitude motions. T
connections hinder these motions, and force instead the i
vidual DBB to follow the dynamics dictated by the lattice

In Fig. 5 we plot the reduced storage modulus@G8(v)#
again for a 2D~20320! lattice, but built from a larger GD,
with f c54, f 54, and g54. The displayed data show th

FIG. 4. Reduced storage modulus@G8(v)# plotted in double logarithmic
scales vs the reduced frequencyvt0 . Shown are results for a square~20
320! lattice based on a GD withf c54, f 54, andg53. The number of
connections between the DBB’s ranges fromMcr51 to Mcr59; the latter
value leads to a network without dangling bonds. The line with open circ
gives the behavior of the single, underlying GD.
IP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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extreme cases, namelyMcr51 and Mcr527; in the latter
there are no dangling bonds anymore~note that the terminal
v2-type decay of@G8(v)# does not yet show up in Fig. 5!.
Moreover, in Fig. 5 we also display the relaxation behav
of the isolated GD, and also a situation in which all perip
eral beads of the GD are hold immobile. From Fig. 5 t
narrowing with increasingMcr of the domain of GD relax-
ation is evident; the narrowing gets even more pronoun
when the DBB size increases. Furthermore, we note the
pearance with largeMcr of a domain intermediate betwee
GD-like and lattice dominated. Also clear from Fig. 5 is th
for high Mcr the high-frequency domain cannot be rep
sented in terms of a single DBB with all its peripheral bea
fixed. This is due to the extremely narrow relaxation sp
trum of a DBB with fixed ends, its longest relaxation tim
being almost independent of its size.26,28

As for the loss modulus@G9(v)#, it turns out to be less
sensitive toMcr than @G8(v)#; see Fig. 6. Here, as usua
@G9(v)# displays a maximum, whose position is mostly d
termined by the high-frequency modes, which in general

FIG. 5. The same as in Fig. 4 but for DBB’s based on a GD withf c54,
f 54, andg54. Shown are the results for the two extreme cases:Mcr51
andMcr527. Also shown is@G8(v)# for the isolated GD~dashed line! and
for the same GD, when its peripheral beads are hold fixed~dashed line with
stars!.

FIG. 6. Reduced loss modulus@G9(v)# plotted in double logarithmic scale
vs the reduced frequencyvt0 . Shown are the results for a square~20320!
lattice based on a GD withf c54, f 54, andg54. HereMcr ranges from
Mcr51 to Mcr527, see text for details.
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volve the motion of just a few beads. The dependence of
dynamics onMcr appears predominantly on length scal
comparable to the size of the GD. We conclude that the l
modulus@G9(v)# is less adequate than@G8(v)# to display
connectivity-related effects. From Fig. 6 we note as spe
case the totally connected situation,Mcr527. The corre-
sponding curve has its maximum shifted to higher frequ
cies, when compared to the situation for smallerMcr .

All the above conclusions have been drawn on the ba
of 2D lattices built from DBB’s, whose symmetry is consi
tent with the symmetry of the lattice~in particular, we chose
f c54). To gain an idea on how this point affects our resu
we calculated the dynamic moduli for the same 2D latt
built from DBB’s which are not symmetrical with respect
the lattice, namely forf c53 ~the data are not shown!. We
found that all our main conclusions are unaffected by
choice of f c .

Now we turn to a 3D cubic lattice, obtained by conne
ing DBB’s. Such a structure continues to be rather simp
possibly, however, it may represent real networks closer.54 In
Fig. 7 we present our numerical results for the storage mo
lus @G8(v)# of a 3D ~20320320! lattice, built from trifunc-
tional dendrimers of generation 5 (f c53, f 53, andg55).
With increasingMcr we observe the same trend as befo
going fromMcr51 to Mcr58 leads to a stronger departu
of the @G8(v)# from the curve corresponding to the isolate
GD; the boundary of the region in which these curves dif
shifts to higher frequencies.

We conclude by noting that the main significant diffe
ence between 2D and 3D GD-based model networks is to
found in the relaxation domain determined by the lattice.
demonstrate this, we plot in Fig. 8 forMcr51 the storage
modulus@G8(v)# for DBB’s connected into a 2D and into
3D network. Here the DBB’s are based on trifunctional de
drimers (f c53, f 53, andg55). The difference in@G8(v)#
can now be seen in the domain of frequencies where
relaxation starts to differ from that of the single GD, on t
low-frequency side. Here one expects a behavior close

FIG. 7. Reduced storage modulus@G8(v)# plotted in double logarithmic
scales vs the reduced frequencyvt0 . Shown are the results for a cubi
~20320320! lattice based on a GD withf c53, f 53, andg55. The number
of connections between neighboring DBB’s ranges fromMcr51 to Mcr

58. The line with open circles gives@G8(v)# for the isolated GD.
IP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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@G8(v)#;v3/2 for three-dimensional47,48 and @G8(v)#;v
for two-dimensional46,52,53networks, a fact which is fulfilled
in Fig. 8. At even lower frequencies the behavior cros
over to the universal,@G8(v)#;v2 scaling law. Now, both
2D and 3D regular lattices are very idealized models
general DBB networks; nonetheless, the finding that c
necting DBB’s into a network~by which the mobility of their
peripheral monomers is hindered! leads to the narrowing o
the internal relaxation domain of the DBB is a fact of gene
validity, which may be used as a signature for cross linki

VI. CONCLUSIONS

In this paper we presented a theoretical study of the
namics of dendrimer-based polymer networks. In such st
tures, the networks are created by connecting DBB’s. O
goal was to determine the influence ofMcr , the number of
connections between the neighboring DBB’s, on the m
chanical characteristics~such as the storage and the lo
moduli! of the network. We modeled the systems by GGS
method which extends Rouse’s ideas to hyperbranched
to multiply-connected objects. We performed our study
two steps, considering first isolated GD’s and then regu
networks formed by such GD’s.

First, we determined analytically the eigenvalues~relax-
ation times! and the eigenfunctions for the generaliz
dendrimers~GD’s!; GD’s are given byf c , the functional-
ity of the core, f, the functionality of the inner branchin
points, andg, the generation. Such GD’s describe a wi
class of structures, among which are the classical dendrim
( f c5 f ), the dendritic wedges (f c5 f 21), and the macro-
molecular stars (f c.2, f 52). Our general results here a
fully consistent with previously undertaken studies.18,19,31

Then, we recalled a general method for determining
the GGS framework the dynamics of regular lattices form
by identical cells~domains! of arbitrary internal topology.
We applied this method to regular~2D as well as 3D! lat-
tices, obtained by connecting DBB’s. Our main variable h
was the number of connections,Mcr , between neighboring

FIG. 8. Reduced storage modulus@G8(v)# plotted in double logarithmic
scales vs the reduced frequencyvt0 . Shown are results for a square~20
320! lattice and for a cubic~20320320! lattice based on a GD withf c

53, f 53, andg55. HereMcr51. The dashed line gives@G8(v)# for the
isolated GD.
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DBB’s. Using analytical and numerical methods we eva
ated the dynamical shear modulus of the system under st
while highlighting the role played byMcr . The fact that an
increase inMcr is linked to a hindrance of the mobility of th
peripheral DBB groups leads to the exclusion of the lo
relaxation times of the DBB’s from the relaxation of th
whole lattice. With increasingMcr the storage modulus
@G8(v)# of the network deviates more and more from t
behavior of@G8(v)# for the isolated GD. This effect is very
general; in particular, it is almost independent of thef c , f,
andg parameters and of the type~2D or 3D! of the underly-
ing lattice. We expect that the effects discussed here will
readily observable through appropriate mechanical exp
ments on dendrimer-based polymer networks.
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APPENDIX: EIGENVALUES AND EIGENFUNCTIONS
OF A GENERALIZED DENDRIMER

Here we present the determination of the eigenval
and eigenfunctions of GD’s which are characterized byf c ,
the functionality of the core, byf, the functionality of the
other inner beads, and byg, the number of generations. Ou
procedure follows closely that of the Appendix of Ref. 18,
that we focus on the differences encountered in going fr
the dendritic wedge treated in Ref. 18 to our general c
here; note that for the wedgef c5( f 21) holds.

1. Mobile core

When the core is mobile in general all GD beads may
involved in the motion.18,19,31Since each inner GD bead i
connected to one bead from the previous and (f 21) beads
from the next generation, the Langevin equations of mot
for the inner GD beads read@see Eq.~1!#

z
dRj ,m~ t !

dt
1KF f Rj ,m~ t !2Rj 21,n~ t !2(

l 51

f 21

Rj 11,l~ t !G50.

~A1!

HereRj ,m(t) is the position vector of themth bead of gen-
eration j, where the indexj for the inner beads lies in the
range 0, j ,g ( j 50 corresponds to the core! andRj 21,n(t)
and Rj 11,l(t) ( l 51,..., f 21) correspond to the location
of the nearest neighbors toRj ,m(t). As in Ref. 18 we set
the right-hand side of Eq.~A1! to zero, since the average
we are interested in imply only linear relations of the norm
modes. The system of Eq.~A1! can be solved by the
transformation18
IP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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Rj ,m~ t !5(
k

CkPk~ j ,m!exp@2lkt/t0#, ~A2!

where t05z/K is the characteristic relaxation time of th
GD, Ck are j-independent constants,lk are the eigenvalues
and Pk( j ,m) are the eigenfunctions corresponding to E
~A1!. The relaxation timestk are uniquely determined by th
eigenvalueslk throughtk5t0 /lk . Inserting Eq.~A2! into
Eq. ~A1! leads to

~2lk!Pk~ j ,m!

1F f Pk~ j ,m!2Pk~ j 21,n!2(
l 51

f 21

Pk~ j 11,l !G50. ~A3!

As before,18,19 also for GD’s the normal modes can b
characterized by motions involving one ‘‘root’’ bead and
of its descendants of higher generations. For any subwe
having as ancestor the same root, beads which belong to
same generation move in the same manner.18,19 For motions
in which the core is the root one thus hasPk( j ,m)
5Pk( j ); see also Refs. 19 and 18 and Fig. 3 of Ref. 31
this way Eq.~A3! gets simplified to

~2lk!Pk~ j !1@ f Pk~ j !2Pk~ j 21!2~ f 21!Pk~ j 11!#50.
~A4!

One solution of Eq.~A4! is Pk( j )5const; the correspondin
eigenvalue isl150. The other solutions are best obtain
using the substitutionPk( j )5( f 21)2 j /2Fk( j ), which leads
to18,19

~ f 2lk!Fk~ j !2Af 21@Fk~ j 11!1Fk~ j 21!#50. ~A5!

Equation~A5! holds for all inner beads, 0, j ,g. The pe-
ripheral beads,j 5g, obey

~12lk!Fk~g!2Af 21Fk~g21!50 ~A6!

while for the casej 50 one has

~ f c2lk!Fk~0!2
f c

Af 21
Fk~1!50. ~A7!

Note that only in Eq.~A7! the parameterf c enters explicitly.
Hence this equation is the one that differentiates arbitr
GD’s, classical dendrimers19 ~for which f c5 f ), and den-
dritic wedges18 ~for which f c5 f 21).

Now, a general group of eigenfunctionsFk( j ) to the
system of Eqs.~A5!–~A7! can be expressed as linear com
binations of the functionsFk

c( j )5cosjck and Fk
s( j )

5sin jck , where theck will be determined in the following.
It is namely a simple matter to verify thatFk

c( j ) andFk
s( j )

satisfy Eq.~A5! for the eigenvalue18,19

lk5 f 22Af 21 cosck . ~A8!

Equations~A6! and ~A7! fix now the form ofFk( j ). It is
easy to check that the linear combination

Fk~ j !5@Af 21~ f c2 f !1@2~ f 21!2 f c#cosck#Fk
s~ j !

1@ f c sinck#Fk
c~ j !, ~A9!

which can be rewritten as
Downloaded 30 Sep 2003 to 130.233.204.73. Redistribution subject to A
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Fk~ j !5~ f 21!sin~ j 11!ck1~ f c2 f !Af 21 sin j ck

1~ f 2 f c21!sin~ j 21!ck , ~A10!

solves both Eq.~A7! and also Eq.~A6! when theck obey

sin~g11!ck5
f 2 f c21

Af 21
singck . ~A11!

We stop to emphasize that by settingf c5 f or f c5( f 21) in
Eqs. ~A10! and ~A11!, we recover the previously obtaine
results for classical dendrimers19 and for dendritic wedges,18

respectively.
Now we turn to the question of the number of distin

eigenvalues obtainable from Eq.~A11!. As previously dis-
cussed by some of us for dendritic wedges,18 in class~ii !,
Eqs. ~A8! and ~A11! lead to either (g21) or to g distinct
eigenvalues. This depends on whether (g11)/g is larger or
smaller thanu f 2 f c21u/Af 21. For

~g11!

g
.

u f 2 f c21u

Af 21
~A12!

Eqs. ~A8! and ~A11! lead to a total ofg distinct solu-
tions; otherwise the number of distinct solutions is (g21).
We note that Eq.~A12! is automatically fulfilled for the clas-
sical dendrimers19 ( f c5 f ) and for the dendritic wedges18

( f c5 f 21). In other words, all their class~i! nonvanishing
eigenvalues and corresponding eigenfunctions are of
tially periodic type.

When Eq.~A12! does not hold there appear, as for cla
~ii ! normal modes,18 additional eigenfunctions. We note firs
that the combination

F~ j !5~ f 21!sinh~ j 11!c1~ f c2 f !Af 21 sinhj c

1~ f 2 f c21!sinh~ j 21!c ~A13!

fulfills Eq. ~A5! for the eigenvalue

L5 f 22Af 21 coshc. ~A14!

Inserting Eq.~A13! into Eqs. ~A6! and ~A7! leads to the
following equation forc :

sinh~g11!c5
f 2 f c21

Af 21
sinhgc. ~A15!

One can easily demonstrate~see Ref. 18! that apart from
the trivial solutionc50, Eq. ~A15! has a single additiona
solution c if and only if (g11)/g<u f 2 f c21u/Af 21 and
( f 2 f c21).0.

Interestingly, when (f 2 f c21),0 and (g11)/g
<u f 2 f c21u/Af 21, Eq. ~A15! has no nontrivial solutions
It turns out that in this case the spatially exponential eig
mode still exists; now its eigenfunction ‘‘alternates’’ from
generation to generation, namely it is given by
IP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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F~ j !5~21! j@~ f 21!sinh~ j 11!c2~ f c2 f !Af 21 sinhj c

1~ f 2 f c21!sinh~ j 21!c#. ~A16!

One should note the factor (21) j when comparing Eq.
~A16! with Eq. ~A13!. It is now straightforward to verify tha
this eigenfunction corresponds to the eigenvalue

L5 f 12Af 21 coshc, ~A17!

wherec is determined by

sinh~g11!c52
f 2 f c21

Af 21
sinhgc. ~A18!

Because of the change of sign in this condition, in a sim
way as above, it follows that Eq.~A18! has a single, non-
trivial solution if and only if (f 2 f c21),0 and (g11)/g
<u f 2 f c21u/Af 21.

We stop to note the differences between Eqs.~A8!,
~A10!, and~A11! on one hand and Eqs.~A13!–~A18! on the
other. They lead to a total ofg nondegenerate class~i! eigen-
modes, which can be categorized into two groups: The
group is given by spatially periodic normal modes, the s
ond group contains at most one spatially exponential nor
mode. Including the eigenvaluel150 we hence have a tota
of

Nl
~1!5g11 ~A19!

distinct, class~i! eigenvalues~i.e., relaxation times!.
Before turning to the class~ii ! normal modes, it is

very instructive at this point to estimate the value of t
minimal nonvanishing eigenvalue in class~i!. From Eq.~A8!
it follows that for spatially periodical normal modes the e
genvalues are bound from below byf 22Af 21, which is
always positive. Furthermore, these eigenvalues do not
pend ong. The L eigenvalue of Eq.~A14! for class~i! nor-
mal modes can be estimated as follows:18 Using the new
variablez5expc one can rewrite Eq.~A15! in the form

z5
f 2 f c21

Af 21

12z22g

12z22g22 . ~A20!

In terms ofz the eigenvalueL, Eq. ~A14!, reads

L5 f 2Af 21~z1z21!. ~A21!

For large g one can obtainz iteratively from Eq. ~A20!.
Evidently, a starting point (g→`) is z(0).( f 2 f c21)/
Af 21 @note that here (f 2 f c21) is positive and that
( f 2 f c21)/Af 21.(g11)/g.1] from which, with Eq.
~A21!, it follows that

L~0!5~ f c11!2
f 21

f 2 f c21
. ~A22!

We stress that, similar to spatially periodic normal mod
the eigenvalue for the spatially exponential mode is bou
from below byL (0), which does not depend ong. Note that
the casef c5( f 21) @when one has a singularity in Eq
~A22!# is not included, because forf c5( f 21) no eigenvalue
of L type exists, see Eq.~A12!. Also, care has to be taken fo
the special casef c5( f 22), for which one might infer
Downloaded 30 Sep 2003 to 130.233.204.73. Redistribution subject to A
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L (0)50, see Eq.~A22!. However, this case,f c5( f 22), is
again not consistent with the appearance of a spatially ex
nential normal mode, see Eq.~A12!, and therefore has to b
excluded from consideration. Repeating all the above ar
ments for the exponential eigenmode of ‘‘alternating’’ typ
see Eqs.~A17! and ~A18!, one can again show thatL (0),
given by Eq.~A22!, is a lower boundary forL. Thus for
class~i! normal modes the eigenvalueL is practically inde-
pendent of the size of the dendrimer~i.e., of the number of
generationsg!. As we will see in the following, this is not the
case for class~ii ! normal modes.

2. Immobile core

The next group of motions which we consider imply a
immobile core,18,19,31 i.e., they are class~ii ! normal modes.
Here, because of the inherent symmetry, one has for G
with given f and g the same set of eigenvalues~relaxation
times! as for the classical dendrimers19 and the dendritic
wedges18 with the samef andg. The only difference consists
in the degeneracy of these eigenvalues. To see this, con
first the case when the normal mode involves a mobile ne
neighbor bead to the core. Then the degeneracy of
corresponding eigenvalues will be here (f c21)-fold, as
compared to (f 21)-fold for the classical dendrimer19 and
to ( f 22)-fold for the dendritic wedge.18 This can be seen a
follows: One can choose as eigenmodes those in which m
of the neighboring beads of the core and their descend
are immobile, so only two neighboring beads~and their
subwedges! move against each other, while the core sta
immobile.18,19,31These beads act as ‘‘roots.’’ Now focusin
on such one root, one can pick for it exactly (f c21) differ-
ent partner roots, by which one obtains a set of correspo
ing, (f c21), linearly independent normal modes. It is th
easy to verify that the other normal modes of this class
low by a linear operation~a subtraction! from the members
of the set.18,19,31

Thus, for class~ii ! normal modes, the problem involve
separated, mobile subwedges. The problem has been
cussed in details in Ref. 18, so that we can report the res
restricting ourselves to point out the changes due to the G
First, when GD beads of the first generation are mob
whereas the core is immobile, Eq.~A7! gets replaced by18,19

~ f 2lk!Fk~1!2Af 21Fk~2!50 ~A23!

and the functions

Fk
s~ j !5sin j ck with j 51,...,g ~A24!

in which theck fulfill

sin~g11!ck5Af 21 singck , ~A25!

solve Eqs.~A6! and ~A23! for the eigenvalueslk , again
given by Eq.~A8!.

The number of distinct solutions of Eqs.~A8! and~A25!
follows now along the discussion lines after Eq.~A11!: The
result is that for (g11).Af 21g Eqs.~A8! and~A25! have
g distinct solutions; otherwise the number of distinct so
tions is (g21). We note18 that the condition (g11)
.Af 21g is fulfilled only in a few cases, namely, forf 53
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with g51 andg52 and for f 54 with g51. For all other
values of the system’s parameters we find, based on
~A8!, (g21) distinct eigenvalues, whose eigenmodes
spatially periodic functions ofj. In general hence (g11)
<Af 21g holds, so that one obtains additional eigenmod
These are of the form18,19

F~ j !5sinh j c ~A26!

and fulfill Eq. ~A5! for L given by Eq.~A14!. They also
fulfill Eq. ~A23!, whereas Eq.~A6! requires in addition that

sinh~g11!c5Af 21 sinhgc ~A27!

holds. This relation, as discussed above, has a single a
tional solutionc if and only if (g11)<Af 21g. In this way
we have in all casesg different eigenvalues. Taking now int
account the (f c21)-fold degeneracy discussed before, w
obtain a total of (f c21)g class~ii ! normal modes in which
next neighbors to the core move.

In general, as discussed before, in class~ii ! normal
modes even larger groups of noncore beads may stay
mobile. We denote byn, with n,(g21), the last generation
in which all beads are immobile. This last generati
contains f c( f 21)n21 immobile beads and we focus on
particular one, to which (f 21) mobile beads are attache
As before, the combination of (f 21) subwedges implies a
( f 22)-fold degeneracy, so that the total degeneracy
now f c( f 21)n21( f 22)-fold, with nP$1,...,g22%.

Now for Fk( j )[0 ~with 0< j <n) and Fk(n11)Þ0,
Eq. ~A5! holds forn, j ,g, Eq. ~A6! stays unchanged, an
Eq. ~A23! is replaced by18

~ f 2lk!Fk~n11!2Af 21Fk~n12!50. ~A28!

This leads to the following set of eigenfunctions@see Eqs.
~A24! and ~A25!#:

Fk
s~ j !5sin~ j 2n!ck , ~A29!

where the eigenvalues are given by Eq.~A8! and theck have
to be obtained from18

sin~g112n!ck5Af 21 sin~g2n!ck . ~A30!

Similar to the cases discussed before, Eq.~A30! has in
the interval 0,ck,p exactly (g2n) distinct solutions
if ( g2n11).Af 21(g2n). Otherwise, i.e., when (g2n
11)<Af 21(g2n), there are (g2n21) distinct solutions
of the type of Eq.~A29!, complemented by one obeying
form akin to Eq.~A26!, namely,

F~ j !5sinh~ j 2n!c, ~A31!

whose eigenvalueL keeps the form of Eq.~A14!, the con-
dition on c being now18

sinh~g2n11!c5Af 21 sinh~g2n!c. ~A32!

The last equation has a unique nontrivial solution if a
only if (g2n11)<Af 21(g2n). Thus, taking into accoun
the degeneracies of eigenmodes, we find here a tota
(g2n) f c( f 22)( f 21)n21 eigenvalues.

Finally, in the special situation,n5(g21), in which
only the peripheral beads move, given thatFk(g21)50,
one has18 from Eq. ~A6!
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~2lk!Fk~g!1Fk~g!50. ~A33!

Equation ~A33! has the unique solutionl51, which is
f c( f 21)g22( f 22)-fold degenerate.

Paralleling Ref. 18, we obtain now the total numberNl
(2)

of eigenvalues~relaxation times! for the class~ii ! normal
modes: Summarizing, in class~ii ! one has for each
nP$1,...,g21% exactly (g2n) distinct eigenvalues, which
are eachf c( f 22)( f 21)n21-fold degenerate. Including als
the casen50, with g distinct eigenvalues, each (f c21)
times degenerate, leads to

Nl
~2!5~ f c21!g1 (

n51

g21

~g2n! f c~ f 22!~ f 21!n21

5 f c

~ f 21!g21

f 22
2g ~A34!

for f >3 and to

Nl
~2!5~ f c21!g ~A35!

for f 52. We obtain the total number of normal modes,
summing those from class~i!, Eq. ~A19!, and from class~ii !,
Eqs.~A34! and ~A35!:

Nl5Nl
~1!1Nl

~2!5Nd , ~A36!

see Eqs.~4! and ~5!. Equation~A36! shows that we have
indeed foundall the eigenvalues~relaxation times! of the
GD’s, with their correct degeneracy.

Finally, the estimation of the minimal eigenvalue in th
class~ii ! of normal modes proceeds exactly as in Ref. 1
There it was proven that the minimal, nonvanishing eige
value corresponds to a spatially exponential normal mo
whose eigenvalueL (1) obeys18

L~1!.
~ f 22!2

~ f 21!~g11! . ~A37!

We note thatL (1) decreases exponentially withg and that it
corresponds to a mode in which the largest~main! dendritic
branches move as a whole with respect to each other.18,19
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