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Dynamics of inhomogeneous cross-linked polymers consisting
of domains of different sizes
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The theoretical approach is developed to describe the dynamics of inhomogeneous cross-linked
polymers consisting of cross-link agglomerations. An inhomogeneous polymer is treated as an
ensemble of noninteracting cross-linked regions~domains! of different sizes. We model an internal
architecture of the domains in a rather regular way and assume a power law decay of the relaxation
modulus inside the domains, a decay usual for a broad class of cross-linked materials on
microscopic scales. Assuming a broad size distribution of the domains in cross-linked polymers due
to a random character of cross linking, we demonstrate a stretched exponential time behavior of the
relaxation modulus on scales larger than the average size of inhomogeneities in the polymer. We
apply this general approach to some special cases of cross-linked polymers, namely to polydisperse
polymer networks, to inhomogeneous meshlike networks, and to inhomogeneously cross-linked
polymeric gels. ©2001 American Institute of Physics.@DOI: 10.1063/1.1401819#
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I. INTRODUCTION

Much interest in cross-linked polymers and gels occ
due to their numerous technical applications. As a con
quence, the cross-linked polymers~polymer networks! have
been a subject of intensive theoretical and experimenta
searches during many past decades. Due to a complex n
of network relaxation processes and a random characte
cross linking, the theoretical approaches have concentr
on model systems. Starting with the earliest molecu
theories,1–4 a great number of the models of polymer ne
works has been developed.5–33 The most of the network
theories seems to be between the phantom1,2 and the affine3,4

models of polymer networks. The main difference betwe
these two approaches resides in the treatment of motion
junctions~cross links!. The junctions in the affine model ar
assumed to be topologically restricted and can move onl
an affine manner with a deformation of the network. In co
trast, in the phantom network model the junctions are
restricted and are treated in the same way as the segmen
network chains. They can fluctuate freely near their aver
positions which are deformed affinely with strain. Besid
the theoretical approaches, computer simulations becam
the last decade a very useful tool to study statistical
dynamical properties of polymer networks.34–43 They allow
the theoretical predictions to be tested, providing a great c
trol over cross-linking processes and topological structure
the polymer networks.

One of the most complicated and still not complete
understood problems of polymer network dynamics seem
be related to inhomogeneities of real cross-linked polym
There is a variety of factors which affect the network form
6780021-9606/2001/115(14)/6785/9/$18.00
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tion and the relaxation processes in polymer networks
gels. These factors include a broad distribution of netw
chain lengths, entanglements effects, dangling chains, fl
tuations of cross-link density, cross-link agglomerations
topological disorder, etc. The inhomogeneity of cross-link
polymers and the disagreement between the experiments
the usual network models are obvious now~see, e.g., Refs
44–52!. Therefore, the problem of the heterogeneity of po
mer networks is of great interest and importance from b
theoretical and experimental points of view. In this paper
focus on the consideration of one possible example of
above network inhomogeneities, namely, on the existenc
regions with different properties in real cross-linke
polymers.53 Such a type of heterogeneities has been found
statistical gels by means of small-angle neutr
scattering.51,52 The random arrangement of cross links
polymer can create regions with the cross-linking dens
higher than average, leading to formation of percolation cl
ters. After contact with an excess of solvent, the solven
mainly absorbed by the regions between the clusters, and
swells heterogeneously.51,52 Moreover, the dynamic and
static light scattering experiments on hydrogels54,55have sup-
ported the existence of such inhomogeneities. As dem
strated in recent work of Oppermann and co-workers56 for
polyacrylamide hydrogels, the inhomogeneities can be v
alized as densely cross-linked regions in a surrounding e
ronment with smaller cross-link density. Therefore, an inh
mogeneously cross-linked hydrogel consists of cross-
agglomerations, i.e., regions with relatively high polym
concentration, and more diluted or swollen regions.56

Having in mind the existence of the above cross-li
agglomerations in polymeric gels, in this paper we model
5 © 2001 American Institute of Physics
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inhomogeneous cross-linked polymer as an ensemble o
gions ~called here domains! with relatively high cross-link
density, which relax on the background of a more dilut
environment. The simplest way to treat the dynamics of s
a system is to consider the relaxation of different cro
linked domains independently of each other. Then the si
tion considered seems to be close to dilute polymer solut
in which cross-linking processes are going on: Sufficien
large formations~clusters! which already possess an intern
network structure still move in the solvent independently
each other. Following the concept of an effective visco
medium,57 it seems to be possible to extend this approach
more dense polymer systems such as cross-linked polym
in the bulk. Treating cross-linked network domains as obje
with a rather regular internal structure and assuming a br
size distribution of the domains in the system, we intend
show a nonexponentinal decay of the time-dependent re
ation modulus~the response on the external perturbations! of
the inhomogeneous polymer network as a whole.

Many complex systems characterized by a disorder
~and! strong interactions show a relaxation decay obeyin
stretched exponential ~Kohlrausch–Williams–Watts!
form:58,59

f~ t !;f0 exp@2~ t/t!b#, ~1!

wheref(t) is some relaxation function and 0,b,1. Nu-
merous examples include relaxation in glasses,60–62 trapping
processes,63,64 relaxation processes in polymers a
gels,65–81 etc. As a consequence, there are a number of
oretical approaches which derived a nonexponentionality
relaxation from a microscopic point of view. We recall he
defect diffusion model for dielectric relaxation in glas
materials,82,83kinetic model of coupled rotators for dielectr
relaxation and light scattering in amorphous polymers,84–88

long-time behavior in trapping processes,63,64 direct energy
transfer,89 hierarchically constrained dynamics for glas
relaxation,90 and coupling model for relaxation in comple
correlated systems.62 In general, a nonexponentiality may b
caused by a superposition of different exponential proce
or by a superposition of intrinsically nonexponential pr
cesses~so-called homogeneous and heterogeneous scen
respectively!.71,81,91–94Moreover, even in the case of a supe
position of a number of exponential processes, an origin
the stretched exponential behavior may be different. For
stance, the coupling model explains a nonexponentiality
complex correlated systems by an existence of strong co
lations ~or interactions! between relaxing units, which slow
down the relaxation.62 In this paper we demonstrate anoth
possibility: A stretched exponential behavior~in particular, in
inhomogeneous cross-linked polymers! may be caused by a
broad size distribution of noninteracting relaxing units~net-
work domains!. Thus, the main goal of the paper consists
the demonstration of a possible origin of the nonexpon
tional relaxation in cross-linked polymers, which is related
structural heterogeneities of polymers. The paper is o
nized as follows. In the next section we describe the dyna
model of inhomogeneous cross-linked polymers consis
of regions~domains! of different sizes. The relaxation insid
the domains is discussed in Sec. III. Section IV is devoted
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the relaxation behavior of the inhomogeneous polymer n
work as a whole. Some particular examples of using
theoretical approach developed are presented in Sec. V
nally, we end with short summary and conclusions of t
paper.

II. DYNAMIC MODEL OF INHOMOGENEOUS
CROSS-LINKED POLYMERS

We begin with the formulation of the theoretical a
proach for describing dynamics of inhomogeneous cro
linked polymers consisting of cross-link agglomerations. W
treat a cross-linked polymer as an ensemble of noninter
ing regions~domains! which have finite sizes and an intern
network structure. An internal structure of the domains
modeled in a rather regular way: Each domain consists on
identical elements connected with each other in an arbitr
~but the same for all domains! way. A structure inside the
domains can represent, for instance, a meshlike~cubic, tetra-
hedral or square! network, a fractal network, etc. The onl
difference between the domains resides in the different n
bern of relaxing elements in the domains. If the condition
dense packing is fulfilled inside the domains, the above
ference in the number of elements leads to the correspon
difference in the domain sizes. In so doing, we reduce
randomness of cross linking to a broad size distribution
domains in the system.

We focus on viscoelastic dynamic properties of such
homogeneous cross-linked polymers. We assume that
cross-linked domains are embedded in a viscous medi
which is ‘‘common’’ for all the domains. In the case of dilut
polymer solutions and gels this viscous medium is a r
solvent. The above consideration may be extended also
dry polymer networks. According to the well-known ap
proach developed for polymer melts,57 an effective viscous
medium can be introduced into concentrated polymer s
tems. The effective medium describes viscous interaction
a given segment of a chain with all other segments; th
interactions cannot be reduced to the intersegmental fric
between a given pair of segments. Making an extension
this approach to cross-linked bulk polymers~elastomers!,
one can assume that a similar effective medium exists in
polymer networks~see, e.g., Refs. 95 and 96!. This medium
takes into account a stochastic character of contacts of
work chain segments and degrees of freedom, which are
included in the network model~side groups, dangling
chains, etc.!.

We consider the mechanical relaxation of an ensembl
network domains under an external perturbation which p
duces a velocity gradient in the viscous medium. In typi
mechanical experiments the complex~shear! modulus
G* (v) is measured as a response on a harmonic strain
citation. In this paper we are interested in the time-depend
relaxation modulusG(t) ~the response of the stress to a she
jump!, which is determined from the complex modulu
as G* (v)5 iv*G(t)exp(2ivt)dt ~see, e.g., Refs. 97 an
98!. We assume that different domains relax independe
of each other and have soft boundaries~boundary domain
elements are not fixed!. Due to the independent relaxation o
domains embedded in the perturbed viscous medium, the
IP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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6787J. Chem. Phys., Vol. 115, No. 14, 8 October 2001 Dynamics of cross-linked polymers
coelastic response of an inhomogeneous cross-linked p
mer can be imitated by the behavior of a number of gen
alized Maxwell elements98 which are connected in paralle
and correspond to the relaxation of different viscoelastic
mains. As a result, the total relaxation modulusG(t) ~as well
as the complex dynamic modulus! of the whole polymer rep-
resents a sum of relaxation moduli of different cross-link
domains.

Each domain in a network system is characterized b
certain number of elements inside the domain~or by a finite
size of the domain! and provides its own contribution to th
total modulus; its contribution depends on the domain s
To proceed further, we need to assume a certain form
distribution function of number of elements in domains.
first, we let the number distributionf (n) have a rather gen
eral form, namely,

f ~n!5Cns exp@2and#, ~2!

where d and s are the parameters of the distribution (d
.0), n is the number of elements in a given domain, andC
is the normalized constant equal approximately
da(s11)/dG21@(s11)/d#. The number distributionf (n)
given by Eq.~2! leads immediately to an appearance of t
average numbern̄ of elements in the domains

n̄5C̃a21/d, ~3!

where

C̃.GS s12

d D Y GS s11

d D ,

a constant which is about unity. Hence, the parametera of
distribution, a;n̄2d, is directly related to the number o
relaxing elementsn̄ in a domain of average size. We assum
that we are in the case of sufficiently large domains. T
means that cross-linked domains contain~on the average! a
large number of elements, i.e.,n̄@1 anda!1.

The concrete forms of a number distribution@Eq. ~2!#,
i.e., parametersd ands, may be found from some physica
reasons at the consideration of concrete cross-linked poly
systems. For instance, a distribution of chain lengths in po
mer networks may have an exponential form@i.e., d51 in
Eq. ~2!# due to a random character of cross-linking pr
cesses, which leads to a Poisson-type distribution of c
links ~see Sec. V!. Note that the above domain approach c
be applied not only to polymer networks and gels, but also
some special classes of composite polymers which consi
slightly cross-linked elastomeric blocks embedded in ri
matrix ~environment!. In this case an effective viscous m
dium should be introduced inside all the domains, and
relaxation of different domains is independent from ea
other. For such composite polymers one expects the fluc
tions of the number of cross links in different domai
~blocks! around some average value. These fluctuations m
be described by Gaussian distribution which can be redu
to the form given by Eq.~2! with d52 for the case of suf-
ficiently large number of cross links in domains.
Downloaded 28 Sep 2001 to 132.230.78.14. Redistribution subject to A
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III. RELAXATION INSIDE CROSS-LINKED DOMAINS

The complex shear modulus~and, correspondingly, the
relaxation modulus! of cross-linked polymers and gels~espe-
cially at the sol–gel transition! often show microscopically a
power law behavior.99–105 Therefore, we focus here on
class of domains which obey such a power law type of
ternal relaxation, i.e., one has for the relaxation modu
G(t) inside the domains:

G~ t !.nkBTS t

t0
D 2g

, ~4!

wheren is the number of relaxing elements~from which the
domains are built! per unit volume,g is the constant (g
.0), andt0 is a certain characteristic~minimal! relaxation
time of a domain. Since all the cross-linked domains con
of the identical relaxing elements and have the identical
ternal architecture, the minimal relaxation timet0 should be
the same for all the domains.

Viscoelastic properties of materials can be described a
by means of the relaxation spectrumH(t) ~or the distribu-
tion function of relaxation timest on a logarithmic scale!,
which is connected with the relaxation modulusG(t) as
follows:98

G~ t !5E H~t!exp@2t/t#d ln t. ~5!

For sufficiently large systems~i.e., for large domains with
n@1 in our case!, the distribution of eigenvaluesl(j) and
relaxation timest(j) is described by the continuous variab
j which numbers modes, and the relaxation spectrumH(t)
is defined as~see, e.g., Ref. 29!

H~t!52nkBT
1

n

dj

d ln t
. ~6!

A rather slow, power-law behavior ofG(t) inside the do-
mains @Eq. ~4!# allows us to use for Eq.~5! the Alfrey’s
approximation98,106 and to find the approximate behavior o
the relaxation spectrum:

H~t!.nkBTgS t

t0
D 2g

, ~7!

i.e., the relaxation spectrumH(t) inside the domains obey
also a power law decay. Note that the positive parameteg
may be smaller as well as larger than 1 depending on dif
ent internal architectures of domains~see Sec. V!.

Since cross-linked domains have finite sizes, they can
characterized by their maximal relaxation timestmax(n)
which depend on the number of elementsn in the domains
~or, on the domain sizes!. A power law behavior ofG(t)
inside the domains@Eq. ~4!# holds up to times around th
maximal relaxation timetmax(n) of a given domain. It is easy
to show from the combined consideration of Eqs.~6! and~7!
that a power law relaxation@Eqs. ~4! and ~7!# leads to the
following relation for relaxation times:

t~j!.t0S n

j D 1/g

. ~8!
IP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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Therefore, one has immediately fortmax(n) @see Eq.~8! at
j51#:

tmax~n!.t0na ~9!

with

a5
1

g
. ~10!

Note that from physical reasons the maximal relaxation ti
tmax(n) should increase withn, i.e., exponenta should be
positive.

At times larger than the maximal relaxation timetmax(n)
of a given domain we obtain an exponential decay of
relaxation modulusG(t;n) of the domain:

G~ t;n!.nkBT
1

a

1

n S tmax~n!

t DexpS 2
t

tmax~n! D . ~11!

Such a type of time behavior ofG(t;n) is caused by the
cutoff of the relaxation spectrum of a given domain due to
finite size. At long times,t.tmax(n), the main contribution to
the relaxation modulus is provided by exponential te
which is governed by the maximal relaxation timetmax @Eq.
~11!#. A more weak, power-law term in Eq.~11! represents a
‘‘memory’’ of the system~the domain of finite size! about
contributions of the relaxation times shorter thantmax. It
should be emphasized here that the long-time behavior o
relaxation modulus of the domains@ t.tmax(n)# is deter-
mined by the maximal relaxation timetmax(n) and, therefore,
depends on the number of elements in a given domain. T
is in contrast to the internal ‘‘intradomain’’ relaxation whic
has a power law character for all the domains and does
depend onn @Eq. ~4!#.

Thus, after a rather slow, power-law relaxation insi
domains@Eq. ~4!#, the relaxation modulus shows an exp
nential decay with a single relaxation timetmax(n); this re-
laxation time depends on the number of relaxing element
the domains@Eq. ~9!#.

IV. RELAXATION OF INHOMOGENEOUS
CROSS-LINKED POLYMERS

Now we calculate the time-dependent relaxation mo
lus G(t) of inhomogeneous cross-linked polymers consist
of domains of different sizes. As mentioned above, the re
ation modulusG(t) of the heterogeneous system conside
represents a sum over relaxation moduli of different d
mains. We consider here the mechanical relaxation in a
work at sufficiently long times,t@t0 . More precisely, we
are interested in the long-time region where almost all cro
linked domains show already a simple exponential deca
their relaxation moduliG(t;n) given by Eq.~11!. Using the
number distribution functionf (n), Eq. ~2!, for averaging
over all the cross-linked domains, one can note that the m
contribution to the long-time relaxation of an inhomog
neous polymer network is provided by the following term
Downloaded 28 Sep 2001 to 132.230.78.14. Redistribution subject to A
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G~ t !u t@t0
;S E f ~n!G~ t;n!u t@tmax(n) dnD
;E ns exp@2and#

1

n S tmax~n!

t D
3expS 2

t

tmax~n! Ddn. ~12!

Taking into account the dependence of the maximal rel
ation timetmax(n) on the domain size@Eq. ~9!# and using the
saddle-point procedure107 with large parameter (t/t0)@1 to
evaluate the integral in Eq.~12! for sufficiently long times,
t@t0 , we obtain finally

G~ t !. n̄domkBTC1S t

t*
D (s23d/2)/(a1d)

3expF2S t

t*
D d/(a1d)G , ~13!

where n̄dom5n/n̄ is the number of domains of average si
per unit volume (n̄ is the average number of relaxing el
ments in domains! and

C15A2pGS s12

d DG22S s11

d D d21/2a (2s23d)/2d

3~a1d!(3d22s2a)/2a.

The characteristic relaxation timet* which determines a
stretched exponential term in Eq.~13! has clear physica
meaning. If a certain distribution of number of elements
domains is introduced in a heterogeneous system@Eq. ~2!#, a
new characteristic time parameter appears. This param
corresponds to the longest relaxation timetD of a domain
realized with the maximal probability, i.e., of a domain of th
average size@see Eq.~9! at n5n̄#:

tD5tmax~ n̄!5t0n̄a5t0a2a/dĈ, ~14!

where

Ĉ.GaS s12

d D Y G2aS s11

d D .

It is very natural~and seems to be correct from a physic
point of view! that the characteristic relaxation timet* in
Eq. ~13! is found to be close totD , namely,

t* 5C2tD , ~15!

where

C2.G2aS s11

d DG2aS s12

d D daa/d~a1d!2(a1d)/d.

Equation~13! indicates that the relaxation modulusG(t)
of an inhomogeneous cross-linked polymer consisting
noninteracting domains of different sizes shows a stretc
exponential decay in the long-time region, att@tD . This is
the main result of the paper. We demonstrated that a po
law behavior of the relaxation modulusG(t), which is typi-
cal for a broad class of cross-linked materials on microsco
IP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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scales~i.e., inside the domains in our model!, is replaced
with a stretched exponential relaxation on scales larger t
the average size of inhomogeneities in cross-linked po
mers. The stretched exponential indexd/(a1d) in Eq. ~13!
ranges between 0 and 1 for all positive values ofd anda. It
should be noted that a formal mathematical origin of
above nonexponentiality with the stretched exponential
dex equal tod/(a1d) resides in the procedure of asympto
evaluation of integral in Eq.~12!. The samemathematical
origin of a stretched exponential decay was reported in so
previous investigations which deal with free-volume theo
of glassy relaxation,108 with electric birefringence in dilute
solutions of polyelectrolyte,77 with trapping processes,109 and
others. The main feature of the theoretical approach de
oped in this paper consists in aphysicalorigin of such a type
of relaxation@Eq. ~13!#: We state here that a stretched exp
nential decay of the relaxation modulusG(t) can be caused
by a structure heterogeneity of cross-linked polymers.

It should be noted that a nonexponential decay of
relaxation modulusG(t) @Eq. ~13!# appears in the long-time
region,t@tD . At such times the relative decreasing ofG(t)
becomes very considerable as compared with the in
value of the relaxation modulus G(0), namely,
G(tD)/G(0);1/n̄ where n̄ is the number of relaxing ele
ments in the domain of average size. In the case of dom
of sufficiently large~on the average! sizes, a stretched expo
nential relaxation may appear therefore in the region co
sponding to very small values ofG(t). In principle, this fact
may prevent in some cases the observation of the none
nential relaxation in inhomogeneous cross-linked polyme

V. SOME EXAMPLES

A. Polydisperse polymer networks

After considering the rather general case, we turn now
some concrete examples. First of all, we consider the s
plest example of internal topology of domains, namely,
domains containing only single polymer chains. From
physical point of view, this means that we are mostly int
ested in the intrachain~in the range of distance between cro
links! relaxation of a polymer network. In other words, w
assume that there is a separation between the time scal
network chain motions and those of the cross-li
motions.110 If we consider the case of sufficiently sho
chains between cross links, whose lengths are not larger
an entanglement distance~so-called moderately cross-linke
networks110!, one can treat the dynamics of polymer cha
in domains in the framework of Rouse model.57,111 In this
case the relaxing elements inside the domains are Rouse
ments, and the difference in the number of elements in
ferent domains corresponds to the polydispersity of the gi
polymer network. The main reason to consider at first suc
type of domains consists in the fact that the number dis
bution function of the domains~or distribution of chain
lengths between cross links! appears here in a rather natur
way. For an ideal stochastic, uncorrelated process of c
linking ~in this case the distribution of cross links obeys
Poisson form!, the distribution of the number of segments
the chains between cross links has an exponential form:110
Downloaded 28 Sep 2001 to 132.230.78.14. Redistribution subject to A
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f ~n!;exp@2an#. ~16!

Such an exponential distribution of network chain leng
has been also obtained in Ref. 112 and verified through c
puter simulations.113 Thus, we can apply our domain ap
proach developed above by settingd51 and s50 in Eq.
~2!. Parametera means the inverse average number of s
ments in network chains~or, the average length of networ
chains!. The behavior of the relaxation spectrum of a Rou
chain is well known~see, e.g., Refs. 57 and 111! and obeys a
power law decay with exponentg in Eq. ~7! equal to 1/2.
The relaxation modulusG(t) inside the domains has also
power law behavior@see Eq.~4! at g51/2# up to times
around the maximal relaxation timetmax(n) of a Rouse chain
consisting ofn segments, which is given by the well-know
relation57,111 @see also Eqs.~9! and ~10! at g51/2#:

tmax~n!.tsn
2, ~17!

wherets is the relaxation time of a single Rouse segme
Thus, the third parameter,a, is equal to 2. Using Eq.~13! for
obtaining the asymptotic behavior of the considered inhom
geneous network leads to

G~ t !. n̄chainkBTS t

t*
D 21/2

expF2S t

t*
D 1/3G , ~18!

where n̄chain is the number of polymer chains of averag
length per unit volume. For simplicity we omit in Eq.~18!
numerical constants~and below as well!. The characteristic
relaxation timet* is close to the maximal~Rouse! relaxation
time of a network chain of average length@see Eqs.~14! and
~15! at d51, a52, ands50# and can be represented a
t* .zn̄2/K wherez is the friction constant of a bead~mono-
mer!, K is the elasticity constant of a Rouse ‘‘spring,’’ andn̄
is the average number of Rouse segments in network cha
Thus, we obtain for the polydisperse polymer network
stretched exponential long-time behavior ofG(t), with ex-
ponent of 1/3, and, in fact, reproduce previous result
Sommer.110 Sommer has also demonstrated a rather g
agreement between this theoretical prediction and the exp
mental data for natural rubber.114,115It should be noted here
that this stretched exponential behavior is derived under
sumption of a separation of time scales of motions of cha
and cross links. Therefore the above nonexponential re
ation holds up to time scales corresponding to the relaxa
of cross-linking points. At longer times it may be masked
the cross-link motions.

B. Meshlike inhomogeneous polymer networks

The next example is related to a more complex inter
topology of cross-linked domains. In contrast to the syste
in which the domains consist of single polymer chains,
consider now an inhomogeneous polymer network as an
semble of domains having a meshlike internal network str
ture. The cross-linked domains show now a more com
cated internal dynamics as compared with single polym
chains, due to the connectivity of the polymer chains into
unified spatial network structure inside the domains. An
ternal architecture of domains is treated as a 3D regular c
IP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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network. Working in the framework of Rouse model,57,111we
focus here on the pure network relaxation only, which
related to the connectivity of chains in a cubic network str
ture. As shown previously96,116 for regular cubic polymer
networks built from Rouse chains, the relaxation spectrum
the network consists of two different regions, correspond
to small-scale~intrachain! and to large-scale~interchain! mo-
tions. The intrachain part of the spectrum is very close to t
of single Rouse chains. On larger scales the interchain,
network relaxation can be reproduced closely by a sim
coarse-grained network model. In this coarse-grained mo
a Rouse chain between junctions is replaced with a sin
Rouse segment~spring! with corresponding redeterminatio
of the elasticity and the friction constants in the netwo
model.96,116

Thus, we treat the cross-linked domains as coa
grained polymer networks of finite sizes. Each cubic dom
is characterized by a number of cross-links~junctions! n in-
side the domain. Note that the number of cross links is
rectly related to the number of polymer chains since in
cubic network domains three polymer chains are~on the av-
erage! attached to a given junction. On scales larger than
distance between neighboring network junctions, the re
ation modulus~as well as the relaxation spectrum! of a cubic
polymer network obeys a power law decay with expon
g53/2 in Eqs.~7! and ~4!:32,95,96,116

G~ t !.nkBTS t

tchain
D 23/2

, ~19!

wheren is the number of cross links per unit volume a
tchain is the relaxation time of a chain between network jun
tions, which is the same for all the domains. Since the me
like network domains have finite sizes~or finite numbers of
cross linksn), the power law behavior is replaced with e
ponential decay@Eq. ~11!# round the maximal relaxation tim
of a given domain@see Eqs.~9! and ~10! at g53/2#:

tmax~n!.tchainn
2/3, ~20!

so that the parametera is equal to 2/3 for this type of cross
linked domains. Note that Eq.~20! is valid for a 3D network
domain of a symmetrical cubic form~not for a domain of an
elongated form! and can be found directly by means of th
consideration of the internal relaxation of a 3D cubic n
work of finite size.117 For describing long-time dynamic be
havior of the whole inhomogeneous network consisting
cross-linked domains of different sizes, we use here a th
dimensional analog of a Poisson-type distributionf (n) given
by Eq.~16!. If a process of cross linking has a random and
uncorrelated character, the distribution function of the nu
bers of cross links in the domains has the form~cf. Refs. 117
and 118!:

f ~n!;n2 exp@2an#. ~21!

Note that the same number distribution~but from different
physical reasons! was previously used in aggrega
model.119–121 In our model we have therefored51 and s
52 @see Eq.~2!#, and Eq.~13! leads to the following long-
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time stretched exponential behavior of the relaxation mo
lus G(t) of an inhomogeneous meshlike polymer netwo
~cf. Refs. 117 and 118!:

G~ t !. n̄domkBTS t

t*
D 3/10

expF2S t

t*
D 3/5G , ~22!

where n̄dom is the number of cubic network domains of a
erage size per unit volume andt* is close to the maxima
relaxation time of the domain of average size@Eq. ~14!#. In
contrast to the preceding section, the characteristic relaxa
time t* .tchainn̄

2/3 here is far from the maximal~Rouse!
relaxation timetchainof network chains due to the long-rang
type of heterogeneities~the domains considered consist of
large number of network chains,n̄@1). Thus, for 3D mesh-
like inhomogeneous networks the relaxation modulusG(t)
obeys a power law behavior@Eq. ~19!# for sufficiently short
times and has a stretched exponential decay@Eq. ~22!# at
longer times (t@tchain and t@tD).

Besides three-dimensional meshlike polymer networ
it is interesting to consider meshlike networks with restrict
geometry, e.g., two-dimensional square networks.9,122–124

Such a type of polymer networks may be realized, for
stance, in polymer films and layers, on the surfaces of po
mer samples, etc. Moreover, the 2D polymer networks are
special interest because the influence of the chain conne
ity on the dynamics of such polymer networks is expected
be weaker as compared to the 3D networks. We treat a
inhomogeneous network in the same way as the above
cussed 3D case. The 2D network is modeled as a numbe
planar domains which represent regular squ
networks.9,122–124We describe an internal dynamics of th
domains in the framework of Rouse model and are mo
interested in the pure network relaxation~i.e., we use a 2D
coarse-grained network model!. At times larger than the re
laxation time of a chain between junctions, the relaxat
modulusG(t) of a regular square network has the followin
behavior:9,123,124

G~ t !.nkBTS t

tchain
D 21

, ~23!

i.e., intermediates between the single Rouse chains and
3D cubic networks@see Eq.~19!#. The quantityn in Eq. ~23!
is the number of cross links per unit surface. Since the
domains are finite, there is a certain maximum relaxat
time tmax(n) depending on the number of cross linksn in a
given domain@see Eqs.~9! and ~10!#:

tmax~n!.tchainn. ~24!

Assuming a random character of cross linking, we use
averaging over all the square network domains the follow
number distribution function@cf. Eqs.~16! and~21!, and note
the two dimensionality of the system considered#:

f ~n!;n exp@2an#. ~25!

Therefore we have herea51, d51, ands51, and Eq.~13!
for long times leads to
IP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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G~ t !. n̄domkBTS t

t*
D 21/4

expF2S t

t*
D 1/2G , ~26!

wheren̄dom5n/n̄ is the number of planar domains of avera
size per unit surface. Thus, we obtained another example
long-time stretched exponential behavior. In principle, o
can apply the above domain approach to inhomogene
meshlike polymer networks with a rather arbitrary regu
internal architecture of domains, for which the relaxati
spectrum inside the domains obeys a power law decay g
by Eq. ~7!. It may be, for instance, a network consisting
domains with a tetrahedral~diamondlike! internal structure.

C. Domain model of inhomogeneously
cross-linked gels

As mentioned in the Introduction, polymeric gels ofte
represent an inhomogeneous structure consisting of cr
link agglomerations moving in a surrounding environme
with smaller cross-link density.51–56Now we intend to apply
the theoretical approach developed in this paper for desc
ing dynamics of inhomogeneous gels. As previously, we
sume that the gel consists of noninteracting domains of
ferent sizes, which can correspond to the cross-l
agglomerations in real gels. Microscopically the gels sh
often a power law decay of the complex modulus~and, cor-
respondingly, of the relaxation modulus!. The simplest phe-
nomenological model to reproduce the microscopic beha
of gels is a ladder model.125 Recently this model was used t
describe the viscoelastic behavior of gels at the sol–gel t
sition as well as the different stages of gelation126 ~see also
Ref. 127!. Thus, we focus here on domains which have
internal ladder architecture.

A ladder network consists of ladderlike structure w
identical springs along one of the struts and dashpots w
identical viscosities on the rungs of the ladder.126,127We are
interested here in a ladder model of finite size. A finite lad
structure can be obtained by finishing ladder either with
spring or with a dashpot.126 The first case corresponds to
solidlike behavior of the domain after the internal relaxati
ends~post-gel regime!, the latter case corresponds to a li
uidlike behavior~pre-gel regime!.126 In principle, the domain
approach developed may be valid for both cases but fro
physical point of view in the pre-gel regime the condition
an independent relaxation of the different domains is ea
to justify: In this case we find readily cross-link agglomer
tions ~domains! inserted into a more dilute environmen
Common to all the ladder arrangements is that they sho
power law behavior for complex modulusG* (v);vg with
g51/2.126–128Therefore, one has for the corresponding
laxation modulusG(t) inside a domain of ladder interna
structure, which consists ofn relaxing elements~springs!:

G~ t !.nkBTS t

t l
D 21/2

, ~27!

wheren is the number of relaxing elements per unit volum
andt l is the characteristic relaxation time of the ladder n
work domain, which is equal to the ratio of the viscosity o
dashpot and the elasticity constant of a spring in the lad
Downloaded 28 Sep 2001 to 132.230.78.14. Redistribution subject to A
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Following Eqs.~9! and~10!, a ladder model of finite size~or
of finite numbern of elements! can be characterized by th
maximal relaxation time

tmax~n!.t ln
2. ~28!

Note that the same dependence oftmax on the length of the
ladder model was numerically found in Ref. 126. Assumi
that the cross-link agglomerations~the domains with a ladde
internal structure! are three dimensional and using the cor
sponding number distribution, Eq.~21!, for averaging over
all the cross-link agglomerations, one finds from Eq.~13! the
asymptotic behavior forG(t) for sufficiently long times,
t@t l :

G~ t !. n̄domkBTS t

t*
D 1/6

expF2S t

t*
D 1/3G , ~29!

wheren̄dom is ~as usual! the number of cross-link agglomera
tions ~domains! of average size per unit volume, andt* is
the characteristic relaxation time close to the maximal rel
ation time of the domain of average size. Thus, we dem
strated that the domain approach can be easily applied
for describing the dynamic behavior of inhomogeneo
cross-linked gels. The approach leads, in particular, t
stretched exponential decay of the relaxation modulus
inhomogeneous gels on sufficiently large scales, namely
scales larger than the average size of structural inhomog
ities in the gel.

VI. CONCLUSION

In this paper we developed a theoretical approach to
scribe the dynamics of inhomogeneous cross-linked po
mers, the inhomogeneities being related to presence in
cross-linked polymers of regions with different propertie
due to the random character of the cross-linking process.
modeled an inhomogeneous cross-linked polymer as an
semble of domains~cross-link agglomerations! of different
sizes, which relax independently from each other on
background of a more dilute~as compared with cross-link
agglomerations!, surrounding environment. The cross-linke
domains were treated as objects with a rather regular inte
structure, which was assumed to be the same for all
cross-linked domains. In so doing, we reduce the rando
ness of cross-linking processes to a broad size distributio
the domains in the inhomogeneous cross-linked polymer

On scales smaller than the average size of inhomoge
ities in the system, the relaxation modulusG(t) shows a
power law time behavior usual for a broad class of cro
linked materials on microscopic scales. Assuming then
Poisson-type size distribution of the domains in the hete
geneous system, we showed, however, that this power
behavior ofG(t) is replaced with a stretched exponent
decay on scales larger than the characteristic~average! size
of inhomogeneities in the cross-linked polymers. The m
result of the paper is the demonstration of the fact tha
broad size distribution of noninteracting relaxing units
cross-linked polymers can lead to nonexponentialities in m
chanical relaxation of polymers, i.e., in a ‘‘polymeric’’ origi
of the stretched exponential decay found for the relaxat
IP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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modulus. This is in contrast to, for example, the glassy
laxation where a nonexponentiality is mostly caused by
strong interactions between the relaxing units. We app
our general approach to some special cases of cross-li
polymers, namely to polydisperse polymer networks, to
homogeneous meshlike networks, and to inhomogeneo
cross-linked polymeric gels.

To conclude, it should be noted that the domain a
proach developed was derived from two main assumptio
First, real cross-linked polymers and gels may consist of
gions with different properties and, second, the dynam
behavior of these regions~domains! may be treated indepen
dently of each other. The first assumption is very natu
from a physical point of view due to a random character
the cross-linking process and is confirmed experimentally
polymeric gels~see, e.g., Refs. 51–56!. The second assump
tion may be restricted for some specific polymer systems
a certain characteristic scale. The independent relaxa
seems to be valid for inhomogeneous polymeric gels con
ing of cross-link agglomerations~especially in the pre-ge
regime! and for rather dilute polymer solutions in which th
cross-linking process is still in progress~see Sec. V C and
also the Introduction!. Such an independent relaxation of th
domains in the case of polydisperse polymer networks~see
Sec. V A! is restricted by characteristic scales on which
chain motions and the cross-link motions are separated.

In the case of dense polymer systems~such as dry poly-
mer networks! we have to introduce an effective viscous m
dium ~but not a real solvent! in which relaxing units~do-
mains! move ~see Sec. V B!. This effective medium in
undiluted polymers consists of the chains of the same
work and describes the viscous interactions of a given
work chain with all other chains. Therefore, even under
sumption that a more diluted~as compared with domains!,
surrounding environment of the domains consists of n
cross-linked linear chains, this effective medium should c
tain the chains which begin in a given cross-linked dom
and end in another domain, providing the connectivity b
tween different domains in a dry inhomogeneous network
other words, the relaxing units~domains! capture only a part
of the story, since real polymer networks have a long-ra
structure. This fact is reflected in the appearance of a n
zero value for their equilibrium modulus.98 Therefore, the
above assumption about an independent relaxation of
cross-linked domains in dry polymer networks may be va
only within a certain scale range, where the connectivity
the domains into a unified structure does not yet provid
considerable contribution to relaxation. On larger scales,
independent dynamics of the domains@and, therefore, the
predicted stretched exponential decay ofG(t)] can be
masked by the cooperative motion of relaxing units~do-
mains!. A simple way to take into account the above conn
tivity of the relaxing units is to ‘‘decorate’’ the bonds of
regular lattice~say square or cubic!, by replacing the bonds
with subunits of an arbitrary internal architecture.129 It may
be a subject of our further investigations.
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