JOURNAL OF CHEMICAL PHYSICS VOLUME 115, NUMBER 14 8 OCTOBER 2001

Dynamics of inhomogeneous cross-linked polymers consisting
of domains of different sizes

A. A. Gurtovenko

Theoretische Polymerphysik, Universitareiburg, Hermann-Herder Str. 3, D-79104 Freiburg, Germany
and Institute of Macromolecular Compounds, Russian Academy of Sciences, Bolshoi Prospect 31,
V.0., St. Petersburg, 199004, Russia

Yu. Ya. Gotlib
Institute of Macromolecular Compounds, Russian Academy of Sciences, Bolshoi Prospect 31,
V.0., St. Petersburg, 199004, Russia

(Received 22 May 2001; accepted 18 July 2001

The theoretical approach is developed to describe the dynamics of inhomogeneous cross-linked
polymers consisting of cross-link agglomerations. An inhomogeneous polymer is treated as an
ensemble of noninteracting cross-linked regi¢themaing of different sizes. We model an internal
architecture of the domains in a rather regular way and assume a power law decay of the relaxation
modulus inside the domains, a decay usual for a broad class of cross-linked materials on
microscopic scales. Assuming a broad size distribution of the domains in cross-linked polymers due
to a random character of cross linking, we demonstrate a stretched exponential time behavior of the
relaxation modulus on scales larger than the average size of inhomogeneities in the polymer. We
apply this general approach to some special cases of cross-linked polymers, namely to polydisperse
polymer networks, to inhomogeneous meshlike networks, and to inhomogeneously cross-linked
polymeric gels. ©2001 American Institute of Physic§DOI: 10.1063/1.140181)9

I. INTRODUCTION tion and the relaxation processes in polymer networks and
gels. These factors include a broad distribution of network
Much interest in cross-linked polymers and gels occurghain lengths, entanglements effects, dangling chains, fluc-
due to their numerous technical applications. As a consetuations of cross-link density, cross-link agglomerations, a
quence, the cross-linked polymeisolymer networks have  topological disorder, etc. The inhomogeneity of cross-linked
been a subject of intensive theoretical and experimental rgpolymers and the disagreement between the experiments and
searches during many past decades. Due to a complex natute usual network models are obvious n¢see, e.g., Refs.
of network relaxation processes and a random character @4-52. Therefore, the problem of the heterogeneity of poly-
cross linking, the theoretical approaches have concentratader networks is of great interest and importance from both
on model systems. Starting with the earliest moleculatheoretical and experimental points of view. In this paper we
theories:™* a great number of the models of polymer net-focus on the consideration of one possible example of the
works has been developéd®® The most of the network above network inhomogeneities, namely, on the existence of
theories seems to be between the phanfoand the affing*  regions with different properties in real cross-linked
models of polymer networks. The main difference betweerpolymers> Such a type of heterogeneities has been found in
these two approaches resides in the treatment of motions statistical gels by means of small-angle neutron
junctions(cross links. The junctions in the affine model are scattering’>>> The random arrangement of cross links in
assumed to be topologically restricted and can move only ipolymer can create regions with the cross-linking density
an affine manner with a deformation of the network. In con-higher than average, leading to formation of percolation clus-
trast, in the phantom network model the junctions are noters. After contact with an excess of solvent, the solvent is
restricted and are treated in the same way as the segmentsrofinly absorbed by the regions between the clusters, and gel
network chains. They can fluctuate freely near their averagewells heterogeneousty>> Moreover, the dynamic and
positions which are deformed affinely with strain. Besidesstatic light scattering experiments on hydrogéfShave sup-
the theoretical approaches, computer simulations became ported the existence of such inhomogeneities. As demon-
the last decade a very useful tool to study statistical andtrated in recent work of Oppermann and co-workefsr
dynamical properties of polymer networks.*3They allow  polyacrylamide hydrogels, the inhomogeneities can be visu-
the theoretical predictions to be tested, providing a great coralized as densely cross-linked regions in a surrounding envi-
trol over cross-linking processes and topological structures inonment with smaller cross-link density. Therefore, an inho-
the polymer networks. mogeneously cross-linked hydrogel consists of cross-link
One of the most complicated and still not completelyagglomerations, i.e., regions with relatively high polymer
understood problems of polymer network dynamics seems tooncentration, and more diluted or swollen regishs.
be related to inhomogeneities of real cross-linked polymers. Having in mind the existence of the above cross-link
There is a variety of factors which affect the network forma-agglomerations in polymeric gels, in this paper we model an
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inhomogeneous cross-linked polymer as an ensemble of réhe relaxation behavior of the inhomogeneous polymer net-
gions (called here domainswith relatively high cross-link work as a whole. Some particular examples of using the

density, which relax on the background of a more dilutedtheoretical approach developed are presented in Sec. V. Fi-
environment. The simplest way to treat the dynamics of suclmally, we end with short summary and conclusions of the

a system is to consider the relaxation of different crosspaper.

linked domains independently of each other. Then the situa-

tion considered seems to be close to dilute polymer solutiond. DYNAMIC MODEL OF INHOMOGENEOUS

in which cross-linking processes are going on: SufficientlyCROSS-LINKED POLYMERS

large formationiclugters) WhiQh already POSSESS an internal We begin with the formulation of the theoretical ap-
network structure still move in the solvent independently of

h other. Following th t of Hoct . SIproach for describing dynamics of inhomogeneous cross-
each other. Following thé concept of an EMeclive VISCous;, o q polymers consisting of cross-link agglomerations. We

medium;,” it seems to be possible to extend this approach Qreat a cross-linked polymer as an ensemble of noninteract-

more dense polymer systems such as cross—lmked pO'Ymeﬁ?g regions(domaing which have finite sizes and an internal
in the bulk. Treating cross-linked network domains as objec%

: ! : etwork structure. An internal structure of the domains is
with a rather regular internal structure and assuming a bro odeled in a rather regular way: Each domain consists of
size distribution of th_e domains in the s_ystem, we intend tc%dentical elements connected with each other in an arbitrary
show a nonexponentinal decay of the time-dependent rela

. . )fbut the same for all domainsvay. A structure inside the
ation modulugthe response on the external perturbatiafs domains can represent, for instance, a mestitikabic, tetra-
the inhomogeneous polymer network as a whole. ' ' ’

M | ; h terized b disord hedral or squadenetwork, a fractal network, etc. The only
any complex systems characterized by a GISorder Ofjigarance petween the domains resides in the different num-
(and strong interactions show a relaxation decay obeying

%ern of relaxing elements in the domains. If the condition of
stretched exponential (Kohlrausch—Williams—Watjs 9

form:5859 dense packing is fulfilled inside the domains, the above dif-
orm: ference in the number of elements leads to the corresponding
d(t)~ poex — (t/7)P] (1)  difference in the domain sizes. In so doing, we reduce the

randomness of cross linking to a broad size distribution of
where ¢(t) is some relaxation function and<g8<1. Nu- domains in the system.
merous examples include relaxation in glag8e&trapping We focus on viscoelastic dynamic properties of such in-
processe&>%* relaxation processes in polymers andhomogeneous cross-linked polymers. We assume that the
gels®®~8letc. As a consequence, there are a number of thesross-linked domains are embedded in a viscous medium,
oretical approaches which derived a nonexponentionality o#hich is “common” for all the domains. In the case of dilute
relaxation from a microscopic point of view. We recall here polymer solutions and gels this viscous medium is a real
defect diffusion model for dielectric relaxation in glassy solvent. The above consideration may be extended also on
materials$?#kinetic model of coupled rotators for dielectric dry polymer networks. According to the well-known ap-
relaxation and light scattering in amorphous polynf&r§®  proach developed for polymer mefsan effective viscous
long-time behavior in trapping proces$a$* direct energy medium can be introduced into concentrated polymer sys-
transfel®® hierarchically constrained dynamics for glassytems. The effective medium describes viscous interactions of
relaxation®® and coupling model for relaxation in complex a given segment of a chain with all other segments; these
correlated systenfé.In general, a nonexponentiality may be interactions cannot be reduced to the intersegmental friction
caused by a superposition of different exponential processdsetween a given pair of segments. Making an extension of
or by a superposition of intrinsically nonexponential pro-this approach to cross-linked bulk polymefslastomers
cessegso-called homogeneous and heterogeneous scenarione can assume that a similar effective medium exists in dry
respectively.”#191=%4\loreover, even in the case of a super- polymer networkgsee, e.g., Refs. 95 and 96 his medium
position of a number of exponential processes, an origin ofakes into account a stochastic character of contacts of net-
the stretched exponential behavior may be different. For inwork chain segments and degrees of freedom, which are not
stance, the coupling model explains a nonexponentiality inncluded in the network modelside groups, dangling
complex correlated systems by an existence of strong correhains, etg.
lations (or interaction$ between relaxing units, which slow We consider the mechanical relaxation of an ensemble of
down the relaxatiofi® In this paper we demonstrate another network domains under an external perturbation which pro-
possibility: A stretched exponential behaviar particular, in  duces a velocity gradient in the viscous medium. In typical
inhomogeneous cross-linked polymensay be caused by a mechanical experiments the complefsheaf modulus
broad size distribution of noninteracting relaxing uriitet- G*(w) is measured as a response on a harmonic strain ex-
work domaing. Thus, the main goal of the paper consists incitation. In this paper we are interested in the time-dependent
the demonstration of a possible origin of the nonexponenrelaxation modulu&(t) (the response of the stress to a shear
tional relaxation in cross-linked polymers, which is related tojump), which is determined from the complex modulus
structural heterogeneities of polymers. The paper is orgaas G* (w)=iw[G(7)exp(—iw7)dr (see, e.g., Refs. 97 and
nized as follows. In the next section we describe the dynami®8). We assume that different domains relax independently
model of inhomogeneous cross-linked polymers consistingf each other and have soft boundarig®undary domain
of regions(domaing of different sizes. The relaxation inside elements are not fixedDue to the independent relaxation of
the domains is discussed in Sec. lll. Section 1V is devoted t@lomains embedded in the perturbed viscous medium, the vis-
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coelastic response of an inhomogeneous cross-linked polyH. RELAXATION INSIDE CROSS-LINKED DOMAINS

mer can be imitated by the behavior of a number of gener-

alized Maxwell elemen?§ which are connected in parallel The complex shear moduluand, correspondingly, the
and correspond to the relaxation of different viscoelastic dof€laxation modulusof cross-linked polymers and geflsspe-

mains. As a result, the total relaxation modut&) (as well ~ cially at the sol—gel tg‘_allr(]gitiomften show microscopically a

as the complex dynamic modulusf the whole polymer rep-  POWer law be_hawo?._ Therefore, we focus here on a

resents a sum of relaxation moduli of different cross-linkedc/ass of domains which obey such a power law type of in-

domains. ternal relaxation, i.e., one has for the relaxation modulus
Each domain in a network system is characterized by £(t) inside the domains:

certain number of elements inside the dom@nby a finite t\ -

size of the domainand provides its own contribution to the G(t)zkaT(—) , (4)

total modulus; its contribution depends on the domain size. 7o

To proceed further, we need to assume a certain form ofyherev is the number of relaxing elemer{fsom which the
distribution function of number of elements in domains. At domains are built per unit Vo|ume’fy is the constant »(

first, we let the number distributiof(n) have a rather gen- >0), andr, is a certain characteristininimal) relaxation

eral form, namely, time of a domain. Since all the cross-linked domains consist
" s of the identical relaxing elements and have the identical in-
f(n)=Cn?exfd —an’], (2 ternal architecture, the minimal relaxation timgshould be

o the same for all the domains.
where 6 and o are the parameters of .the d'St”b,Ut'Oﬁ ( Viscoelastic properties of materials can be described also
=>0), nis the number of elements in a given domain, &d . eans of the relaxation spectrud(7) (or the distribu-
s the normalized constant equal approximately t0go, finction of relaxation times on a logarithmic scae

dal”* VI "I (s+1)/6]. The number distributionf(n) \/nich is connected with the relaxation modul@t) as
given by Eq.(2) leads immediately to an appearance of theg,; ;5,598

average numben of elements in the domains

=Ca 1o 3 G(t)=f H(7r)exd —t/7]dIn 7. (5)
where For sufficiently large system&.e., for large domains with
n>1 in our casg the distribution of eigenvalues(¢) and
relaxation timesr(¢) is described by the continuous variable
~ o+2 o+1
C=r 5 F(T , & which numbers modes, and the relaxation spectkimn)
is defined agsee, e.g., Ref. 29
a constant which is about unity. Hence, the paramatef 1 dé¢
distribution, a~n~?, is directly related to the number of H(m)=—vkeTo 4707 (6)

relaxing elements in a domain of average size. We assume _ o
that we are in the case of sufficiently large domains. Thig? rather slow, power-law behavior d&(t) inside the do-

means that cross-linked domains contén the averagea  Mains[Eq. (4)] allows us to use for Eq(5) the Alfrey’s
large number of elements, i.a> 1 anda<1. approximatior®®and to find the approximate behavior of

The concrete forms of a number distributipqg. (2)], the relaxation spectrum:

i.e., parameterg and o, may be found from some physical F\Y

reasons at the consideration of concrete cross-linked polymer H(7)= kaT‘)/(—) , (7)
systems. For instance, a distribution of chain lengths in poly- 7o

mer networks may have an exponential fofire., 5=1 in e, the relaxation spectruid(r) inside the domains obeys

Eq. (2)] due to a random character of cross-linking pro-also a power law decay. Note that the positive parameter
cesses, which leads to a Poisson-type distribution of crossay be smaller as well as larger than 1 depending on differ-
links (see Sec. Y. Note that the above domain approach canent internal architectures of domaifsee Sec. Y.
be applied not only to polymer networks and gels, but also to  Since cross-linked domains have finite sizes, they can be
some special classes of composite polymers which consist @haracterized by their maximal relaxation times,,(n)
slightly cross-linked elastomeric blocks embedded in rigidwhich depend on the number of elementsn the domains
matrix (environmenk In this case an effective viscous me- (or, on the domain sizésA power law behavior ofG(t)
dium should be introduced inside all the domains, and thénside the domain$Eq. (4)] holds up to times around the
relaxation of different domains is independent from eachmaximal relaxation time-,,(n) of a given domain. It is easy
other. For such composite polymers one expects the fluctuao show from the combined consideration of E(.and(7)
tions of the number of cross links in different domainsthat a power law relaxatiofEgs. (4) and (7)] leads to the
(blocks around some average value. These fluctuations magsllowing relation for relaxation times:
be described by Gaussian distribution which can be reduced "
to the form given by Eq(2) with §=2 for the case of suf- E) 7 )
£

ficiently large number of cross links in domains. (&)=1o
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Therefore, one has immediately fey,,(n) [see Eq.(8) at

&=1] G(t) t>'ro~( f fMGtM s (n) dn)
— o 1 n
Tmax{N) = Ton ©) ~J' n”exq—anﬁ]ﬁ( Tma:( ))
with )
Xexp — dn. 12
1 (10) l{ Tma)&n)) (12
a= —,
Y Taking into account the dependence of the maximal relax-

ation time7,,5(N) on the domain sizgEq. (9)] and using the
Note that from physical reasons the maximal relaxation timesaddle-point procedut® with large parametert(ry)>1 to
Tma{N) should increase witim, i.e., exponentr should be  eyaluate the integral in Eq12) for sufficiently long times,

positive. . o t> 10, we obtain finally
At times larger than the maximal relaxation timg,,{n)

of a given domain we obtain an exponential decay of the =
relaxation moduluss(t;n) of the domain: G(t)=vgonkeTCy

7_*

_ 11 N t g |2
G(t,n)zkaT;ﬁ( n )eXL<—Tma)&n))- (11 xexp —| — : (13

T

¢ ) (0—3512)/(a+ 5)

Such a type of time behavior d&(t;n) is caused by the wherevy,,=v/n is the number of domains of average size
cutoff of the relaxation spectrum of a given domain due to itper unit volume E is the average number of relaxing ele-
finite size. At long timest> 7,,,(n), the main contributionto  ments in domainsand

the relaxation modulus is provided by exponential term

which is governed by the maximal relaxation timg., [EQ. C.= \/EF
(11)]. A more weak, power-law term in E¢11) represents a !
“memory” of the system(the domain of finite sizeabout

‘TJ;Z -2 o+l 5 112,(20-35)125

X (a+ 5)(35720701)/20('

o+1
1)

contributions of the relaxation times shorter thag,,. It
should be emphasized here that the long-time behavior of th€he characteristic relaxation time* which determines a
relaxation modulus of the domairffgs> 7,,,(n)] is deter- stretched exponential term in E@L3) has clear physical
mined by the maximal relaxation time,,,(n) and, therefore, meaning. If a certain distribution of number of elements in
depends on the number of elements in a given domain. Thidomains is introduced in a heterogeneous system(2)], a
is in contrast to the internal “intradomain” relaxation which new characteristic time parameter appears. This parameter
has a power law character for all the domains and does naiorresponds to the longest relaxation timg of a domain
depend om [Eq. (4)]. realized with the maximal probability, i.e., of a domain of the

Thus, after a rather slow, power-law relaxation insideayerage siz¢see Eq(9) atn=n:
domains[Eq. (4)], the relaxation modulus shows an expo- - o R
nential decay with a single relaxation timg,,(n); this re- 5= Tmad N) = ToN*= 102~ *“/°C, (14)
laxation time depends on the number of relaxing elements ithere
the domaingEq. (9)].

. a(a'-l-Z / - o+1
C=r 5 r 5

IV. RELAXATION OF INHOMOGENEOUS It is very natural(and seems to be correct from a physical
CROSS-LINKED POLYMERS point of view) that the characteristic relaxation timé in

Now we calculate the time-dependent relaxation moduEd- (13) is found to be close top, namely,
lus G(t) of inhomogeneous cross-linked polymers consisting 7+ =cC, 7, (15)
of domains of different sizes. As mentioned above, the relax-
ation modulusG(t) of the heterogeneous system consideredVhere
represents a sum over relaxation moduli of different do- o+2
mains. We consider here the mechanical relaxation in a net- C,=I"2¢ )F“( 5 >5a“’5(a+ §)~(ata)s,
work at sufficiently long timest>r,. More precisely, we
are interested in the long-time region where almost all cross- Equation(13) indicates that the relaxation modulGgt)
linked domains show already a simple exponential decay o6f an inhomogeneous cross-linked polymer consisting of
their relaxation moduliG(t;n) given by Eq.(11). Using the  noninteracting domains of different sizes shows a stretched
number distribution functiorf(n), Eq. (2), for averaging exponential decay in the long-time regiontatm. This is
over all the cross-linked domains, one can note that the maithe main result of the paper. We demonstrated that a power
contribution to the long-time relaxation of an inhomoge-law behavior of the relaxation modul@(t), which is typi-
neous polymer network is provided by the following term: cal for a broad class of cross-linked materials on microscopic
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scales(i.e., inside the domains in our models replaced f(n)~exd —an]. (16)
with a stretched exponential relaxation on scales larger than

the average size of inhomogeneities in cross-linked poly_Such an exponential distribution of network chain lengths

mers. The stretched exponential indéXa -+ &) in Eq. (13) has been also obtained in Ref. 112 and verified through com-
ranges between 0 and 1 for all positive values@nda. It puter simulations:® Thus, we can apply our domain ap-

should be noted that a formal mathematical origin of theProach developed above by settidg-1 and =0 in Eq.

above nonexponentiality with the stretched exponential in-(z)' Parametea means the inverse average number of seg-

dex equal toS/(«+ 6) resides in the procedure of asymptotic mer_lts in network c_;halns)r, the average length of network
evaluation of integral in Eq(12). The samemathematical cha!ns)'. The behavior of the relaxation spectrum of a Rouse
origin of a stretched exponential decay was reported in som(éhaIn ISI welclj knowr(gie, €.9. Refg. 5E7 an;d ])Jdndlobeyl/fza
previous investigations which deal with free-volume theory_ﬁ’_zwerlawt_ ecay \(’j\"tl ;Xfo.”e’.’g mth qd( ) e_quah o | '

of glassy relaxationi®® with electric birefringence in dilute e relaxation modulu&(t) inside the domains has also a

solutions of polyelectrolyt&” with trapping processé§?and ~ POWer law behaviofsee Eq.(4) at y=1/2] up to times

others. The main feature of the theoretical approach deveF—lround the maximal relaxation time,a,(n) of a Rouse chain

oped in this paper consists irpaysicalorigin of such a type ConS.'St”;gﬂ?fn segments, which is given by the.well—known
of relaxation[Eq. (13)]: We state here that a stretched expo-relat'or? " [see also Eqq(9) and(10) at y=1/2]:

nential decay of the relaxation modul@t) can be caused Tmad N) = T2, (17)
by a structure heterogeneity of cross-linked polymers.

It should be noted that a nonexponential decay of th
relaxation moduluss(t) [Eqg. (13)] appears in the long-time
region,t> 7. At such times the relative decreasing®ft)
becomes very considerable as compared with the initi
value of the relaxation modulusG(0), namely, _ t | 12 £\
G(7p)/G(0)~1/n wheren is the number of relaxing ele- G(t)z”chaid‘BT(T_*) exr{ _(T_*) ] (18)
ments in the domain of average size. In the case of domains .
of sufficiently large(on the averagesizes, a stretched expo- where vg,4i, is the number of polymer chains of average
nential relaxation may appear therefore in the region correlength per unit volume. For simplicity we omit in E¢L8)
sponding to very small values @(t). In principle, this fact numerical constant&and below as well The characteristic
may prevent in some cases the observation of the nonexpoelaxation timer* is close to the maximaRouse relaxation
nential relaxation in inhomogeneous cross-linked polymerstime of a network chain of average leng#ee Eqs(14) and

(15 at =1, =2, ando=0] and can be represented as

V. SOME EXAMPLES ™ =~ ¢n?/K where( is the friction constant of a bee(dnong

men), K is the elasticity constant of a Rouse “spring,” and
is the average number of Rouse segments in network chains.
After considering the rather general case, we turn now taorhus, we obtain for the polydisperse polymer network a
some concrete examples. First of all, we consider the simstretched exponential long-time behavior ®{t), with ex-
plest example of internal topology of domains, namely, theponent of 1/3, and, in fact, reproduce previous result of
domains containing only single polymer chains. From aSommer!® Sommer has also demonstrated a rather good
physical point of view, this means that we are mostly inter-agreement between this theoretical prediction and the experi-
ested in the intrachaiin the range of distance between crossmental data for natural rubb&*%It should be noted here
links) relaxation of a polymer network. In other words, we that this stretched exponential behavior is derived under as-
assume that there is a separation between the time scalessafmption of a separation of time scales of motions of chains
network chain motions and those of the cross-linkand cross links. Therefore the above nonexponential relax-
motions™® If we consider the case of sufficiently short ation holds up to time scales corresponding to the relaxation
chains between cross links, whose lengths are not larger thaf cross-linking points. At longer times it may be masked by
an entanglement distan¢so-called moderately cross-linked the cross-link motions.
networks'9, one can treat the dynamics of polymer chains
in domains in the framework of Rouse modét! In this L
case the relaxing elements inside the domains are Rouse SeBg_Meshhke inhomogeneous polymer networks
ments, and the difference in the number of elements in dif- The next example is related to a more complex internal
ferent domains corresponds to the polydispersity of the givemopology of cross-linked domains. In contrast to the systems,
polymer network. The main reason to consider at first such @ which the domains consist of single polymer chains, we
type of domains consists in the fact that the number districonsider now an inhomogeneous polymer network as an en-
bution function of the domaingor distribution of chain semble of domains having a meshlike internal network struc-
lengths between cross linkappears here in a rather natural ture. The cross-linked domains show now a more compli-
way. For an ideal stochastic, uncorrelated process of crogsated internal dynamics as compared with single polymer
linking (in this case the distribution of cross links obeys achains, due to the connectivity of the polymer chains into an
Poisson forny the distribution of the number of segments in unified spatial network structure inside the domains. An in-
the chains between cross links has an exponential #&'m: ternal architecture of domains is treated as a 3D regular cubic

where 75 is the relaxation time of a single Rouse segment.
eI'hus, the third parametes, is equal to 2. Using E13) for
obtaining the asymptotic behavior of the considered inhomo-
Jpeneous network leads to

A. Polydisperse polymer networks
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: (22

network. Working in the framework of Rouse modél'we  time stretched exponential behavior of the relaxation modu-
focus here on the pure network relaxation only, which islus G(t) of an inhomogeneous meshlike polymer network
ture. As shown previous¥'® for regular cubic polymer

. . . 3/10 3/5
networks built from Rouse chains, the relaxation spectrum of t t

e

to small-scaldintrachair) and to large-scal@nterchairn) mo-
tions. The intrachain part of the spectrum is very close to tha@vherejdom is the number of cubic network domains of av-
network re]axation can be reproduc.ed closely by a simplgg|axation time of the domain of average sf&g. (14)]. In
coarse-grained network model. In this coarse-grained mod@lynrast to the preceding section, the characteristic relaxation

. . . 2 e 7™ =71 here is far from the maximalRouse
Rouse segmgr(isprln@ with _colrrespondmg re_determlnatlon relaxation timerg,in Of Network chains due to the long-range
of the elasticity and the friction constants in the network

Thus, we treat the cross-linked domains as coarself”lrge number of network chains>1). Thus, for 3D mesh-
- : ; - ; beys a power law behavigEg. (19)] for sufficiently short
is characterized by a number of cross-lirfkenctiong n in- 0 .

y 9 times and has a stretched exponential delday. (22)] at
rectly related to the number of polymer chains since in théonggr tl_gwes ;(r:> TC“S‘.“ andt_> TDI)' hiik | work
cubic network domains three polymer chains @me the av- esides three-dimensional meshiike polymer networks,
distance between neighboring network junctions, the relaxgeo?etr%/, e.g.f, tV\I/o—d|menf|on?<l squarg netv;@ﬁff.‘f .
ation modulugas well as the relaxation spectruof a cubic uch a type or polymer networks may be realized, for in-

related to the connectivity of chains in a cubic network struc<{cf. Refs. 117 and 118

the network consists of two different regions, corresponding G(t):;dO'TkBT

of single Rouse chains. On larger scales the interchain, PUtgrage size per unit volume and is close to the maximal

a Rouse chain between junctions is replaced with a singlfﬁm -

model %6116 type of heterogeneitie@he domains considered consist of a

grained polymer networks of finite sizes. Each cubic domairw(e inhomogeneous networks the relaxation moduli(s)

side the domain. Note that the number of cross links is di-

erage attached to a given junction. On scales larger than thg is interesting to consider meshlike networks with restricted
polymer network obeys a power law decay with exponentStance' in polymer films and layers, on the surfaces of poly-

y=3/2 in Eqs.(7) and (4):329:96.116 mer samples, etc. Moreover, the 2D polymer networks are of
special interest because the influence of the chain connectiv-
t )\ -3 ity on the dynamics of such polymer networks is expected to
G(t)= kaT( .~ n) , (19 be weaker as compared to the 3D networks. We treat a 2D
chai

inhomogeneous network in the same way as the above dis-

where » is the number of cross links per unit volume and €ussed 3D case. The 2D network is modeled as a number of
planar domains which represent regular square

Tehain1S the relaxation time of a chain between network junc- 0129124 X . X

tions, which is the same for all the domains. Since the mesHEWOrks: We describe an internal dynamics of the
like network domains have finite sizésr finite numbers of domains in the framework of Rouse model and are mostly
cross linksn), the power law behavior is replaced with ex- nterested in the pure network relaxatidre., we use a 2D

ponential decayEq. (11)] round the maximal relaxation time coarse-grained network mogieAt times larger than the re-
of a given domairisee Eqs(9) and(10) at y=23/2]: laxation time of a chain between junctions, the relaxation

modulusG(t) of a regular square network has the following

Tmad N) = TenaiN >, (20  behavior12%:124
-1

so that the parameter is equal to 2/3 for this type of cross- G(t)= vk T( t “) -
linked domains. Note that EqR0) is valid for a 3D network B\ 7o ,

domain of a symmetrical cubic forigmot for a domain ofan . ) ) .
elongated formand can be found directly by means of the ie., |nt9rmed|ates between the single Ro.use_chams and the
consideration of the internal relaxation of a 3D cubic net-_?’D cubic networkgsee 59(19)]- The guantltyv n Eq. (23
work of finite size!*” For describing long-time dynamic be- 'S the number of cross links per unit surface. Since the 2D
havior of the whole inhomogeneous network consisting ofdomains are finite, there is a certain maximum relaxation
cross-linked domains of different sizes, we use here a thrediMe Tma{n) depending on the number of cross linksn a
dimensional analog of a Poisson-type distributi¢n) given ~ 9iven domainisee Eqs(9) and(10)]:

by Eq.(16). If a process of cross linking has a random and an T )= Tepail (24)
uncorrelated character, the distribution function of the num- "™ chairf

bers of cross links in the domains has the fdoh Refs. 117 Assuming a random character of cross linking, we use for
and 118: averaging over all the square network domains the following
number distribution functiofcf. Egs.(16) and(21), and note

f(n)~n?exd —an]. (2D the two dimensionality of the system considdred

Note that the same number distributidout from different f(n)~nexd —an]. (25)
physical reasons was previously used in aggregate

model!*®*~*?1In our model we have thereforé=1 ando  Therefore we have here=1, =1, ando=1, and Eq(13)
=2 [see Eq(2)], and Eq.(13) leads to the following long- for long times leads to
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—1/4 t 1/2
expg —| —
7_*

where?dom= vin is the number of planar domains of average Tmad N)=7N°. (29)

size per unit surface. Thus, we obtained another example ofﬁ hat th q q he | h of th
long-time stretched exponential behavior. In principle, one ote that the same epen encerhfx Qnt e length of t €
dder model was numerically found in Ref. 126. Assuming

can apply the above domain approach to inhomogeneOLJ . . ) .
meshlike polymer networks with a rather arbitrary regulart%at the cross-link agglomeratiothe domains with a ladder

internal architecture of domains, for which the relaxationimerm_il structur)aare_ thfee _dimensional and using the carre-
spectrum inside the domains obeys a power law decay give§pond|ng number dlstrlbutlo_n, Eq21). for averaging over
by Eq. (7). It may be, for instance, a network consisting of all the cro_ss—lmk agglomeratlons, one.ﬂ.nds from Ekﬁ) the
domains with a tetrahedratliamondlikg internal structure,  2SYMPtotic behavior folG(t) for sufficiently long times,

t>7:
t )1/6 F{ ( t )1/3‘|
—~ exp — — , (29)
T T

As mentioped in the Introduction, polymeric. gels often Wherejdom is (as usualthe number of cross-link agglomera-
represent an inhomogeneous structure consisting of crosggng (domain of average size per unit volume, andl is

link agglomerations moving in_S% surrounding environmentihe characteristic relaxation time close to the maximal relax-
with smaller cross-link density. Now we intend t0 apply  tion time of the domain of average size. Thus, we demon-
the theoretical approach developed in this paper for descrifsirateq that the domain approach can be easily applied also
ing dynamics of inhomogeneous gels. As previously, we aStor gescribing the dynamic behavior of inhomogeneous
sume that the gel consists of noninteracting domains of difsqss-linked gels. The approach leads, in particular, to a
ferent sizes, which can correspond to the cross-linksyerched exponential decay of the relaxation modulus for
agglomerations in real gels. Microscopically the gels shownpomoegeneous gels on sufficiently large scales, namely, on

often a power law decay of the complex modulsd, cor-  gc4jes Jarger than the average size of structural inhomogene-
respondingly, of the relaxation modujuShe simplest phe-  itias in the gel.

nomenological model to reproduce the microscopic behavior
of gels is a ladder modéf® Recently this model was used to
describe the viscoelastic behavior of gels at the sol—gel tra

Following Eqgs.(9) and(10), a ladder model of finite sizer
, (26) of finite numbern of elements can be characterized by the
maximal relaxation time

G(t)z%okaT(—*
.

C. Domain model of inhomogeneously T
cross-linked gels G(t)=vgonksT

Yl CONCLUSION

sition as well as the different stages of gelatfGrisee also In this paper we developed a theoretical approach to de-
Ref. 127. Thus, we focus here on domains which have anscribe the dynamics of inhomogeneous cross-linked poly-
internal ladder architecture. mers, the inhomogeneities being related to presence in real

A ladder network consists of ladderlike structure with cross-linked polymers of regions with different properties,
identical springs along one of the struts and dashpots witildue to the random character of the cross-linking process. We
identical viscosities on the rungs of the laddfér®’We are  modeled an inhomogeneous cross-linked polymer as an en-
interested here in a ladder model of finite size. A finite laddesemble of domaingcross-link agglomerationsof different
structure can be obtained by finishing ladder either with aizes, which relax independently from each other on the
spring or with a dashpdt® The first case corresponds to a background of a more dilutéas compared with cross-link
solidlike behavior of the domain after the internal r8|axati0nagg|omeration)s surrounding environment. The cross-linked
ends(post-gel regimg the latter case corresponds to a lig- domains were treated as objects with a rather regular internal
uidlike behavior(pre-gel regimg'?® In principle, the domain  structure, which was assumed to be the same for all the
approach developed may be valid for both cases but from gross-linked domains. In so doing, we reduce the random-
physical point of view in the pre-gel regime the condition of ness of cross-linking processes to a broad size distribution of
an independent relaxation of the different domains is easighe domains in the inhomogeneous cross-linked polymers.
to justify: In this case we find readily cross-link agglomera- ~ On scales smaller than the average size of inhomogene-
tions (domaing inserted into a more dilute environment. ities in the system, the relaxation modul@Ggt) shows a
Common to all the ladder arrangements is that they show gower law time behavior usual for a broad class of cross-
power law behavior for complex modul@&* (v) ~w? with  |inked materials on microscopic scales. Assuming then a
y=1/2.126"18Therefore, one has for the corresponding re-poisson-type size distribution of the domains in the hetero-
laxation modulusG(t) inside a domain of ladder internal geneous system, we showed, however, that this power law

structure, which consists of relaxing elementgsprings: behavior of G(t) is replaced with a stretched exponential
~1/2 decay on scales larger than the characteristi@rage size
G(t):kaT(;) , (270 of inhomogeneities in the cross-linked polymers. The main
|

result of the paper is the demonstration of the fact that a
wherew is the number of relaxing elements per unit volume,broad size distribution of noninteracting relaxing units in
and 7, is the characteristic relaxation time of the ladder net-cross-linked polymers can lead to nonexponentialities in me-
work domain, which is equal to the ratio of the viscosity of achanical relaxation of polymers, i.e., in a “polymeric” origin
dashpot and the elasticity constant of a spring in the laddeof the stretched exponential decay found for the relaxation
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