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Full Paper: A dynamicmodel of a heterogeneoupoly-
mer network systemis proposed A polymer network is
presented as an ensemble of cross-linked regions
(domains)of different sizes,the domainshave similarly
regularinternal structuresTo a first approximationthese
domainsare treatedindependentlyof eachother Relaxa-
tion modulus,storagemodulus,and loss modulusof the
heterogeneougolymer network are calculated.For the
purposeof averagingover all networkdomainsthe expo-
nentialnumberdistribution of chainsegmentsn domains
is used.This type of distributionhasbeenpreviouslypro-
posedby one of the authorsin the frame of the aggrega-
tion model. It is shown that a structure heterogeneity
introducedinto a network model accordingto the above
domain approachleads, at long times, to the stretched
exponentiatype of time dependencef relaxationmodu-
lus insteadof the powerlaw dependenceredictedby the
theoriesdealingwith regularnetworks.The network het-
erogeneityalsoleadsto a morerapid decreasen the sto-
rage modulusin the region of low frequenciesas com-
paredwith regularpolymernetworks.It is shownthat the
lossmodulusin theregionof its maximumis very slightly
sensitiveto the “long-range” network heterogeaity con-
sidered.

Dynamic model of a heterogeeouspolymer network con-
sistingof cross-linkedregons(domains)of differentsizes
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Intr oduction

The dynamts of polymer netwoks is a very interestng
andnot conpletely understoogroblemof polymer phys-
ics. In most theaies dealng with long-time netwok
dynamts, regularpolymer netwoks with differenttopo-
logies have been studiedt'” to descibe the dynamic
behaviorof cross-lnked polyme's. A polymer netwok
hasbeenmodeledasa collection of long flexible chairs
connectedy junctions(cross-inks). It hasbeenassumed
thatall netwok chainshaveidenticalconbur lengthsand
form a regqular spatial structureof meshikel* 351317 or
treeliketopologies® 1012

Themainresuts of the previoustheaiesof viscodastic
mectlanical propeties of regular polymer networksmay

be formulatedasfollows. The cross-linkingof multi-seg
mentalpolymer chainsin a networkstructureleadsto the
appearane of an additional long-time branch of the
relaxation spectrumdescibing the collective interchain
relaxatiort- 12, The charaderistic time pamametercormre-
spondingto the maximumrelaxationtime 7cnain Of @ chain
betweenneighbaing netwok cross-lnks appeas. This
time parameterdividesthe total relaxation spectrumof a
polymer netwok into two different regiors. The first
regionis theintrachainspectrumwith timessmallerthan
the relaxationtime of a chain betweenneighboringjunc-
tions zchain This patt of the spectum is very similar to the
spectrunof alinearnot cross-linkedpolymer. Thesecond
region of the relaxationspectrumhastimes greater than
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Tenain @Nd comrespona to the long-scaleinterchainrelaxa-
tion processesypical of polymer networks® 3512171 The
relaxationspectrumH (z) (or the distribution function of
relaxationtimest on alogarithmic scale)is relatedto the
relaxationmodulus G (t) asfollows:*®

G(t) =G + / H(z) exp[-t/7]d In T (1)
where G is the equilibrium modulus of a polymer net-
work. Both intra- and interchain paits of the relaxation
spectrumof regular polymer netwaks show the power
law behavior If a regularpolymer network consistingof
“bead and spring” Rouse chaird'¥ is considerd, the
intrachan part of the relaxation spectrumH (z) hasthe
usual Rousea behavior 2 (see, for exanple,
ref!2:351217)  The behavia of the interchainpart of the
relaxation spectrumof a netwok dependsconsderably
on the topology and connecivity of the netwok model
considerd. For example,in the cas of infinitely large
three-dinensionalregularnetwoks (cubic or tetrahedal)
the interchaincolledive part of the relaxationspectrum
behavesast=7? i.e.,decreasemore rapdly ascompared
with theintrachain spectrumcomponent?-*17 Such atype
of relaxation spectrun behaviorleads to the correspond
ing powerlaw time dependece of the relaxation modu-
lus G(t) of aregularpolymernetwok. In the caseof an
infinitely large cubic netwak, the relaxaton modulus
G(t) decreaesast™? at timessmalle thanthe relaxaton
time 7chain Of @ chain betweencross-links and as t°7 at
longertimes

The usage of regular models of polymer netwoks
represert the simplest approachto study the netwoik
dynamic andallowsusto analyze quditatively the effect
of the cross-linking of polymer chairs in a spatid net-

work structureon the viscecelastic propeties. However
the comparison of the predictiors of regular netwok
models with the experimentis often impossble because
real cross-lnkedpolymershavea heterogeeousstructure
asarule. Thereis a great numberof possile typesof the
netwak structure heterogneity It may be, for exanple,
the distribution of moleculr weights of netwoik chains
betweencross-links,the existence of regiors with differ-
ent topology and cross-lnk density the existenceof not
cross-linked amorphos domairs, dangling chairs etc.
Therefore, the problem of structureheterogneity is of
greatimportarce for theaetical corsideratias of viscoe
lastic properties of polyme netwoks. In this paper we
shall confineoursehesto the corsideration of oneexam
ple of a netwok heterogneity concerningthe existence
of regiors with different propeties in real polymer net-
works.

Dynamic model of a heterogeneougolymer
network

A randomcharater of the cross-linkingprocesanaylead
to the existenceof cross-linkedaswell asnot cross-lnked
regons in a real netwok polymer. The cross-lnked
regons of differentsizesmay be sepaatedby theregions
corsistingof the not cross-lnkedmacromdecules.A first
simplestapprocimation seemsto consistof the indepen-
dert treatrrent of different cross-linked regions. There-
fore, we propacse the following dynamic model of a het-
erageneousnetwork. A polymer network as a whole is
presented as an ensenble of cross-linked regions
(domains)of differentsizes which relaxindependery of
eachother (Fig. 1). It is asumedthat eachdomainrepre-
sents a regular cubic network consiting of NxNx N

Fig. 1. Dynamicmodelof a heterogaeouspolymernetworkconsising of
cross-linkel regions(domains)of differentsizes
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cells. The polymer chairs betweenneighboring cross-
links of the cubic netwok domansaremodeledby “bead
andspring” Rousechairs ! Each multi-segmerdl Rouse
chaincortainsn, beadgsegmets). The quantty n, is the
samefor all the domahs forming a heterogneousnet-
work, the domans differ from each other only by the
numberof cubic networkcellsinside of the domairs. The
structure regularity (homogerity) inside of netwok
domairs allows us to use (after somemadifications) the
resultsobtainedin the theaies dealingwith regularpoly-
mernetwoks.

We assumethat the cubic netwok domairs have soft
boundaris (bounday junctions are not fixed) and are
embealdedin aneffective viscousmedum whichis “com-
mon” for all the domairs. The viscoelasic responsef an
ensemblef the netwolk domairs to anexterna perturba-
tion producing a longitudinal velocity gradient in the
effective viscous medum is studed. In a certain sense,
the heteogeneais networkmodelconsidereds similar to
a polymer solution in which a cross-linkng processs in
progres. In this case,the sufficiently large formations
alreadyhaving an internd netwok structuremovein a
realsolventandrelaxyetindepenently of eachother

Sincea longitudinal velocity gradient prodwced by an
externalpetturbation in an effective viscousmedum is
assumedo be the samefor all networkdomairs, the vis-
coelasic responsef a collection of domairs may be imi-
tatedby the behaviorof a numberof generalzed Maxwell
model$® (correpondirg to viscoelasic domairs of dif-
ferent sizes) conneced in parallel. Therdore, the total
dynamt modulusof a heteogeneais polymernetworkas
a whole is the sum of dynamt moduli of netwok
domairs with different weights. Theserelative weights
(contributions) of dynamic modui of different domairs
shouldbe determinedby domainsize distribution. Since
the nonrinteractirg netwak domairs of differentsizesare
assumedo relax independery, the doman model of a
heterogneouspolymer netwok seems to be similar to
the modelof revesible aggegation?°22 The aggegation
model has been propcsed by one of the authors for
describirg the relaxaton of amaphouspolymes. Some
related aspectsof structure heteogeneity of polymers
have beenalso discissedin ref2324 |n this paper, the
number distribution function of the aggregabn model,
which obeys the exponetial law,?*23 will be usedfor the
avergying over all the domainsof a heterogeeousnet-
work. If each network domain is chamacterizedby the
numberof chain segments(“beads”) which it contains,
the distribution function of the numberof polymer seg-
mentsin the netwak domansn(y) is givenhby20:22

n(y) = Cy* exp[—ay] )

whereC is anormdization constantParametea is deter
minedasa = Uy/ksT where U, is the enegy of the smal-

lest domain®?°22 The size of the smalest domain must
have an order of magnitude closeto the size of a cubic
networkcell (notsmalkr).

Paraneter determinesthe avermge number y of chain
segmentsn thedomairs, i. e.,theavemgedomainsize:

[ yn(y)dy
S n(y)dy

Note thatthe averaye domainsizey = (y) is very close
to the quantity /<y?) = 21/3/a for the numbe distribu-
tion function consdered. The netwak domain of the
averagesize shoud containa numberof chain segments
much greaterthan thosein a netwok cell becauseall
domainshaveaninternd netwok structurein the system
considerd and, therefore,shodd be larger (not smalker)
thanthe cubicnetwok cell. An elementarycell of aregu-
lar cubic netwok consistsof 3n, chainsegnents. There-
fore, the condiion y > 3n, shoud be fulfilled. This
meanghatthe pammetera = 3/y of the numter distribu-
tion function hasto be much smalle thanunity for suffi-
ciently long chairs, narrely, a < 1/n,.

3
a

y= ©)

Relaxation modulus

Relaxationrmodulusof a uniquedomain

At first, we considerthe viscoelatic meclanicalbehavio
of a uniquedomainthat hasa three-dinensionalregular
network structure. It has beenshownl*”:2528 that in the
consider#ion of viscodastic dynamic propertiesof three-
dimensimal meshlike regular netwoks conskting of
“bead and spring” Rousechans, intra- and interchain
relaxationprocessscanbetreatedsepartely. The contri-
bution of small-sca¢ intrachain motions to netwok
dynamic is shown to be very similar to the contibution
of not cross-link& chains with the same molecula
weight asthat of the chains betweencross-linksin a net-
work. The interchainlong-scde motionscan be satisfae
torily descibed using a simplified “coarse-graind”
model of a netwok. 1141725261 The coase-graired
modelof a cukbic netwok representsa collectionof beads
(junctions) comectedby springsinto a unified regular
network structure. The elasttity consant K of a spring
betweenneighboringjunctions corespondsto that of a
multi-segnental Rousechain as a whole betweenthese
junctions Thefriction constint¢ of a junction relativeto
the effective viscous medium mimics the friction of
halves of the netwak chairs directly attaded to the
given junction. Thus,in orderto obtainthe total relaxa-
tion modulus G(t) of a cubic polymer netwak of “bead
and spring” Rouse chairs, it is suficient to a good
approxination to sumthe relaxationmodulus Gy(t) of a
coarse-graied netwok model and the relaxationmodu-
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lus G¢(t) of not cross-lnked polymer chairs with the
samemolecularweightasthosein the netwoik."2526

The relaxation modulus Gy (t) is presentedas a sum
over all the relaxation times ty of a coasse-graind net-
work model

1 -

GN (t) - Ge + V— 3kBT Z exq_t/TN (0)] (4)
dom F

whereVyonm is the volume of a netwok doman andG; is

the equiibrium modulus of a netwok. The relaxation

times 7y(#) manifesed in the medanical relaxaton of

the coarse-graimed netwok modelaregiven by!'4:16.25261

6Tmin
3 — cod); — cod), — cod,

w(0) = (5
where i, is the minimum relaxationtime of a coarse
grainednetwok model(at ;.23 = ):

S
DA (6)

The interchainwave vector = (01, 0,, 05) determines
the phaseshift betweerdisplacenentsof neighbaing net-
work cells. Its componentsin the caseof a cubic netwok
of finite sizearegivenasfollows:

Tmin =

T

z ™)

Since the network doman consideredhasfinite size,
thefinite maxmum relaxatbn time 7. €xistsas

k1;2;3; k1:2:3 = 17 seey N - 1

01:2:3 =

4

Tmax = ? N2Tmin (8)
which is propational to the squareof numbe of junc-
tions N along everly Cartesiandirection of a cubc net-
work.

For the intrachaincomporent G¢(t) of thetotal relaxa-
tion modulusof anetwak doman we obtain

1

Ge(t) = Vs
lom

"N 3T ) expi-t/rc(w)]  (9)

where 3N? is the numkber of polymer chairs in a cubic
network doman. The corresponthg relaxation times
7c(y) aregivenby:

2‘[0
c(y) = (

1 - cowy) (10

Herex, is the relaxationtime of a singlechainsegmat
(aty =)

So
8Kq

To = (11)

whereK, is the elasttity constat of a Gawssiansubchain
(“spring™), and ¢, is the friction constantof a “bead of

the netwok chain betweencross-Inks. The intrachain
wave vecta y correspndsto the phaseshift betweerdis-

placementsof neighboringbeadsof a Rousechain**27

km
= k=1..
Y = t1 Mo

(12)

where n, is the numberof beadsin the chain between
cross-links.

Thetotal relaxationmodulusof a domainis the sumof
relaxation modul Gy(t) and G¢(t). Note that the mini-
mum relaxation time t,, of a coarse-graird netwok
model (Eg. (6)) hasan order of magniude equal to the
maximum relaxationtime z.nqin Of @ chain betweemeigh-
boring junctions™ namey, 7min = (1%/4) Tchain. The quan-
tity 7cnain iS givenby (seeEg. (10) at = n/(np + 1)):

Tchain = % (no + 1)2To (13)

Sincethe distribution function of the numbe of chan
sggmentsin domairs (Eqg.(2)) will be usedfor the aver
aging over all domairs, it is necessaryto presat the
relaxation modulus of a uniquedomainas a function of
the numbe of chain segmenty in the doman. The cubic
netwak doman consising of y chain segmentsontains
N® cubic netwok cells with 3n, segnents per cell (i.e.
with three multi-segnental Rouse chains per netwok
cell). Therefae, onecanwrite thefollowing simpleinter
relation:

y = 3npN® (14)

Finally, the relaxation modulus G(t; y) of a doman
corsistingof y chainsegnentsis presentedasfollows

1
G(t;y) — Ge = 3venainka Ty TZ exp[ft/rc]
0y

+§;§:exq_vfd} (15)
4

where venain is the number of netwok chairs per unit
volume.Thefirst termin Eq. (15) correspndsto the con
tribution of intrachain relaxaton, and the secondterm
descibestheinterchain collective relaxationof a netwok
domah. The relaxation times manfestedin G(t;y) range
from the relaxation time of a single chain segmentz,
(Eg. (11)) to the maximum relaxaton time 7ma(y) of a
cubic netwok domainof finite size (seeEq.(8)), which
may berewrittenusing Eq. (14) as:

4 [ 1\

Tmax(y)
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Using Eq.(15) one can evaluate the asymptdic time
dependeane of relaxationmodulusG(t; y) of auniquenet-
work domain The corresponihg calculdions are very
similar to thosecarriedout in ref.*”! At shorttimest, <t
< Techain therelaxationmodulus G(t; y) behavess

1 6 Tchain
e S VKT — + — [ ——
ke N =« t

wherev = Nyvenain iS the numker of chan segnents per
unit volume. This powekrlaw time behavior of G(t; y) is
typical of asinge Rousechain*81°27 At timesfrom zenain
to Tmax(Y) (S€€eEqg. (16)) the relaxatbn modulusof a cubic
netwok doman hasthe sametime behavior asthat of an
infinite regularcubic networkin the region of interchain
colledive relaxation- >4 nanely:

G(t;y) — (17)

G(t;y) — Ge = vkgT - — -

No 2

L () ae

At longertimes (t > tmaxy)) We obtain the following
asymptaic behaviorfor the relaxationmodulusG(t; y)
of anetworkdomah of finite size:

Glt:y) — e = T - 213 %(M)

4 t

t
eXp{ Tmax(Y) } (19

One can seethat the relaxationmodulus G(t;y) of a
three-dinensionalnetwork domain of finite size hasan
exponetial decayat longesttimesbecawsethe relaxaton
spectrumof the domainis limited by thefinite maximum
relaxaton time .(y) of the doman asawhole.In other
words, each netwak domain conssting of y polymer
chainsegmentst timesgreder thanits maximumrelaxa-
tion time tmax(y) shows a simple relaxationbehavior with
asinglerelaxaton time. Note thatthe relaxationmodulus
G(t; y) includesalso the powerlaw tem (tmadt) which
hasmuchmoreweaktime dependece asconmparedwith
theexponenil term.

Thus,therelaxationmodulusG(t; y) of auniquedomain
with internal cubic netwokk structurehasthe powerlaw
time dependencies 2 andt=2in theintra- andinterchain
regionsof relaxationinsideof thedomain respectively. At
timesgreaterthanthe maximumrelaxation time of a net-
work domain the relaxation modulus decreaes rapidly
accodingto theexponatial law (Fig. 2).

Relaxationrmodulusof a hetengeneougolymer
networkwith domainstructue

A heteogeneas polymer netwok in the preset pape is
modeled as an ensenble of indepement cross-linked

|
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Fig.2. RelaxationmodulusG(t) of the three-dimesionalnet-
work systemsconsicered: an infinitely large regular cubic net-
work (solid line), a singlecubic networkdomainof averag size
(dashedine), and a heterogeeousnetworkwith domainstruc-
ture (dottedline); heren, = 20anda = 0.001

domainsof differentsizes.As mertionedabove,in order
to obtaintherelaxaton modulusof the heterogneouset-
work asa whole, it is necessarto averagethe relaxation
modulusG(t; y) over all domairs forming the netwok.

The netwok hetgogeneity consteredis long-range,it

beginsto be manifestedon a scale greaterthanthe size of

an elementarynetwork cell. Therefae, the relaxation
modulusG(t) of a heterogneouspolymer netwok asa
whole at times smalle thanthe relaxationtime of a net-
work chain tqnain hasthe sametime behavio asthat of a
uniguedomain(seeEq. (17)) becausehe polyme chains
betweenneighbaing cross-Inks inside of all domains
consisiof anidertical numbe ny of chainsegmaits.

At longer times (t > tcnan), the main cortribution to
relaxationmodulus G(t) of a heterogneousnetwok is
provided by the time regons in which the exponential
decay of moduli of netwok domahns appeas (see
Eq. (19)). Justthis exponetial decayafter averagim over
all domairs with numberdistribution function (Eq. (2))
determinesthe time dependece of G(t) of a heteroge
neousnetwolk asawhole. To evalude the time behavia
of relaxationmodulus G(t) atlong times onecanusethe
Laplacemethodf® of edimation of the asymptdic beha
vior of integral with large dimersionless paramegr
(t/7enain > 1). Finally, at sufficiently long times(t > zchain)
we obtain the following asymptaic behavio of the
relaxationmodulus G(t) for a heterogneousetwok

3/10
(G(t) — Ge) = VaonksT - C; - (arb)l/s ' (%)
chain

.exp{( rt )3/5}

(20)
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whereC, = 2795+ 5712 32910. 72110~ 34 4andvyon = v/Y
is the numter of domans of averagesizeperunit volume
(v is the numberof chainsegmentsper unit volume).The
charateristicrelaxationtime t* in the stretchedexponen
tial term is closeto the maximumrelaxationtime zp of
the netwak doman of averagesize (see Eq.(16) at

y=y)
4 [ 1\
o = ? <a) Tchain (21)
namely
T* = CzTD (22)

whereC, = 553228313 = 0.15.

Eq. (20) indicatesthat the relaxationmodulusof a het-
erogeneas polymer netwok after averaying over all
domains has the streched exponetial type of time
dependecge: exp[—(t/z*)%®%. The apperance of the
stretchedexponetial time dependece is causedby the
existenceof the exponetial termin the numberdistribu-
tion function n(y) of network domairs (Eg.(2)). The
algebrat term (t/zchain**°in Eq. (20) is chamcterizedby a
much weaker time dependece as compared with
stretchecexponenial term andarisesfrom the factory? in
the numberdistribution used(seeEq. (2)). It is alsointer-
estingto note that the relative decreasef the relaxation
modulusG(t) at times correspndingto the beginningof
the region of strethedexponetial dependece (i.e. at t
= 1p) is given by (G(1p)—Go/(G(0)-G,) = 0.14- a.
Hence,the relaxationmodulusof a polymer netwoik at t
= 1p becomessmall becausef the abovecondition a <
1/ny whereng is the numbe of bead in a Rousechain
betweercross-links(ny > 1 for sufficiently long chains).

It shouldbe especidy emphasizedthat the stretched
exponenial time dependece of the relaxatbn modulus
of heterogneousnetwak systens appearsbecausethe
averagimg over all domairs is peiformed usingthe num-
ber distribution function n(y) containing the exponatial
term (seeEq. (2)). Besdesthe numberdistribution func-
tion of the aggegationmodelr®>??, which hasbeenused
in this pape, thereare manyotherexamplesof exponen
tial distributions. The exponetial distribution seemsto
be the geneal origin of time dependenceof sucha type.
For example,the stretthed exponenial time dependace
of the relaxation modulus may apper dueto a broaddis-
tribution of the molecular weight of netwok chairs,
which also obeysthe exponetial law.?®! Another exam
ple may be a netwok systemwith a domainstructurein
which the numker of cross-Inks inside of the domans
fluctuatesdueto a randomcharacterof the cross-linkirg
processand,therefor, is governedby the Gaussiardistri-
butionfunction exp[ —(y—<y»)%2{5y?)].

Thus, if a long-rangeheterogneity of a cross-lnked
polymeris takeninto account in the frame of the above

domah approab, the decieaseof the relaxationmoduls
of a netwok at long timesbecomeanuach more rapid as
comparedwith a homog@eousnetwak. The powerlaw
time dependece of relaxationmoduls G(t) ~ t°? of a
regularthree-dinensianal netwok in theinterchainregion
of relaxationis replacedby the stretchedexponetial type
of time dependencef therelaxationmodulus(Eg. (20))in
thecas of ahetergeneousetworksystem(Fig. 2).

Complex polymer systemsoften show decayobeyirg
the stretdhed exponetial law, i.e. more rapid relaxation
than the power (algebrai¢ type of relaxation.Examples
include the locd segmentalmations in non-cryst#ine
polymers, the motions of polyme chairs in entargled
polymer melts, and relaxation phenomenain other com-
plex correlaed systemgsee for exanple, thewell-known
review of Nga®). In thesesystens, thestrongcorrelaion
betweenrelaxing units hasan effect in slowing downthe
relaxation.Another exanple is the dieledric relaxationin
glassymaterials,which hasbeentreatedin the frame of a
defect diffusion model 232 In our cas, the origin of the
appearanceof stretdhed exponetial relaxationis related
to the broad size distribution of non-inteacting relaxing
units (domains)in aheterogneougolymernetwok. This
is similar to the situation in disorcered orientational
glasse®® where the non-exponetial relaxationis also
causednostlyby heterogeeoushroadeing.

The abovecorsiderablechangeof thetime dependece
of the relaxatbn modulusin the cas of the heteroge
neaus polymer network as comparedwith the homoge
neaus one should be also marifested in the relaxation
spectum. Therelaxaton spectrumH (z) is determned by
Eqg.(1). Thisis a very important quantity becausell the
visceelastic charateristics correspnding to mechanical
relaxation (e.g. dynamicmodulusand viscosty) may be
calcdated with the useof the relaxationspectum® At
short times smalleg than the maxmum relaxatbn time
Tehain OF @ chain betweencross-links,the relaxaton spec-
trum of a heterogeeousnetwak with domain structure
shows usualRousearbehavior:

Tchain
H(z) = vkeT— — , [—2n
(T) VKB N ™ T

Sucha type of behavior is causedby the fact that the
netwak chans betweencross-linksin all the domainsof
a netwok haveidertical cortour lengths,i.e. the hetero-
gereity of the consideed type does not influence the
intrachainrelaxation.At long times (t > tchan and 7 >
7p), the relaxation spectrum H(z) shows very rapid
decreasenamdy,

(23

. 3/2
H(r) = VdokaT(arb)C< — >

exp—3(z/70)""]
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where C = 2755 4 32 3, is the numberof netwok
domairs of averaye size per unit volume, and 1p is the
maximum relaxationtime of the netwoik doman of aver
age size (Eqg.(21)). One can seefrom Eq. (24) that the
relaxaton spectum H(z) of a heter@eneoumetworkin
the long-time region of interchain (or “interdomain”)
relaxatbn is much narower as comparedwith the spec-
trum of aninfinitely large regular three-dinensimal net-
work, which hasthe powerlaw behaviorz=? (for exam
ple, seeref[l:3.14.16.17)

Storageand lossmoduli

Storageandlossmoduliof a uniquedomain

With the useof Eq.(15), the complexdynamicmodulus
G* (w;y) of a unique domain consising of chain seg-
mentsis presentecasfollows:

|(,OTC

+ iwte

G (w;y) = Ge+3kaT{ Z 1

ity

Ty Z 1+imty } (25

Here v is the number of chain segmats per unit
volume 1 are the intrachain relaxation times (see
Eq.(10), (11), and(12)), andzy arethe interchainrelaxa-
tion times of a cubic network domain (seeEq. (5), (6),
and (7)). Using Eq.(25), it is eay to obtainthe storage
modulusG’' (w) of auniquenetwok doman (realcompo-
nentof complexdynamic moduls G* (w)):

(wte)?

! . V| 1
G'(w;y) = G+3kBT[ Z—H(wr)

ty Z

The storage modulus G'(w; y)-Ge. of a netwok
domainhasthe following behavior at extrenely high fre-
quenciesy > 1/t (herez, is the relaxaton time of a sin-
gle chainsegmen{Eq. (11))):

(wtn)? }

26
1 + CO‘L'N ( )

’ 4 1
In the region of high frequencies(1/to > @ > 1/tchain),
the storagemodulusof a domainbehavesas:

G(w;y) — G = kaT%«/ano

Sud a form of frequency dependece of the storage
modulusis typical of a singe Rouse chain*®1%27 |n the

(28)

In [ (G'(®)-G,)/vk,T ]

In (o1

chain)

Fig.3. Dynamicstoragemodulus G’ () of an infinitely large
regular netwok (solid line), a single domain of averagesize
(dashedine), and a heterogeeousnetwork with domainstruc-
ture (dottedline); heren, = 10anda = 0.001

region of low frequencig (1/tchain < @ < Lltmax(Y)), the
storage modulus of a netwak doman has the same
behaviorasthat of a regularthree-dimensionalpolymer
network in the regon of interchain coopeative relaxa-
tion [1416.2528 ngmely

.= g7 L 1803

No

G,(w§ Y) (Cmf-chain)a/2 (29)
wheretnain is the maximumrelaxation time of a netwok
chainbetweemeighbaing junctions(Eq. (13)). Note that
for an infinitely large three-dinensionalnetwok sucha
type of frequencybehaviorholdsup to zerofrequency In
the caseof a cubic netwok doman of finite size,which
containsy polymer segnents, the relaxationspectrumis
limited by the finite maximum relaxaton time tmax(y) of
the doman asawhole (seeEq. (16)). Therefore,at lower
frequencies(w < 1/tmax(y)) we obtain the following
asymptoic frequencybehavior of the storagemodulus
G'(w; y)—G. of anetworkdoman

1 12v3
G'(w;y) —Ge = kaTn—0 T[\Z/'
Tmax(¥) V/ Tehain) (30)

which differs from that of aninfinitely large regular net-
work (Eq. (29)). Thedecreaseof G’ (w; y) atlow frequen-
cies becanes more rapidly in the caseof a doman of
finite size as compare with an infinitely large regular
network(Fig. 3 and4).

The lossmodulus G” (w) of a unique netwok domain
(imaginay comporent of complex dynamc modulus
G* (w)) is givenby (seeEq. (25)):
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Fig.4. Thefrequencydepenlenceof dynamicstoragemodulus
G'(w) atw < lltenain, the denotdion of the curvesis the sameas
in Fig. 3

In (G"(e) / vk,T)

In (01

chain)

Fig.5. DynamiclossmodulusG” (w) of aninfinitely largereg-
ular network (solid line), a single domain of averagesize
(dashedine), and a heterogeeousnetwork with domainstruc-
ture (dottedline); heren,= 10 anda = 0.001

WTc

, 1
G"(w;y) _3kaT{ Zm

_Z 1+ ( wrN) }

ThequantityG” (w; y) is chamcterizedby the existence
of the maximum its positionis deternined by therevase
relaxationtime of a single Gaussiansegmat 1/, (see
Fig.5). At very high frequenciesw > 1/t (regionon the

(3D

right of the maximum of G”(w; y)) the loss modulus
behavesas:

1
G'(myy) = VkBTT e

(32

With the deceaseof frequency (1/tchain < @ < 1/lzg)
(region on the left of the maxmum of G”(w; y)) theloss
modulushasthe behavior:

G (0ry) = T~ s (33

Note that the frequencydependece of G” (w; y) of a
netwak doman at frequenciesw > 1/tcnain is the sameas
that of a single Rousechain®’ At low frequencies1/
Tmax(Y) < @ < Ltchain, the quantityG” (w; y) showsa beha
vior typical of a three-dinensimal regular netwaks4,
nanely:

" 1 12V3
G'(myy) = VkBT— 2
No

(chhain)

[1 - % \/5%71“} (34)

In the cas of aninfinitely large regularnetwoik, such
a type of frequency dependece holds up to frequencies
having an order of magnitudeequal to 1/(107nar). At
lower frequencis, the lossmodulus of aninfinitely large
regular netwok behavess(cf. Eq. (34)):

1 12
G"(wiy) = vkeT —— n—‘[(mcham) (35)
0
In the caseof a netwok domainwhich is chamacterized
by the finite maxmum relaxation time tma(y) (see
Eg.(16)), we obtain the following asymptotic behavig
for the lossmodulus G” (w; y) at low frequenciesw < 1/

Tmax(Y):

G (wry) = kaTi ﬂ

Tchain
[1 Tmax(y) ]
It is seenthatthe slopeof acurve of G” (w; y) for anet-
work domain of finite size at very low frequencies
chargesasconparedto thatfor aninfinitely largeregular
netwak. Note thatthis effect is very weak (Fig. 5 and6).
It is deteminedby the differene in the termswhich are
smaler than the main terms (~wznain) in the frequency
dependenceof G”(w; y) by an order of magnitude(cf.
Eq.(34) and (36)). The weaknessof the effect is caused
by thefactthatthelossmoduusG” (w; y) atlow frequen-
cies(namey, the main secondtermin Eq.(31) atw < 1/

(w‘[chain)

(36)

395
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Fig.6. The frequencydependenceof dynamic loss modulus
G"(w) atw < Lltenaim the denotdion of the curvesis the sameas
in Fig. 5

Tmax(Y)) 1S mostly determined by the relaxaton time z¢pain
of anetwok chainbetweercross-lnks (notthe maximum
relaxatbntime tmax(y) of a uniguedomainasawhole).

Storageandlossmoduliof a hetepgeneoupolymer
networkwith domainstructue

To obtan the dynamc modulus G* (w) of a hetero@-
neouspolymer netwak as a whole, it is necessaryto

averaye the dynamt modulus G* (w; y) of a uniquenet-
work domainover all the domairs in the systemconsid-
ered with the use of the numbe distribution function
given by Eq. (2). Storageand loss moduli of a heterog-
neouspolyme netwak asa whole at frequenciesgreater
thanthereverserelaxaton time of a chainbetweercross-
links 1/rcnain havethe samefrequencybehavior asthoseof

a unigue domain (see Eq. (27) and (28) for G'(w) and
Eq. (32) and(33) for G” (w)). This is causedoy the fea-
ture of the type of the netwoik heterogneity constdered
which beghnsto be manifesed on a scalegreaterthanthe
averaye distancebetweenneighbaing cross-links(poly-

mer chairs betweenneighbaing cross-Inks inside of all

domairs consst of an identical numbe n, of Gauwssian
segments)

In the regionof low frequencies(w <€ 1/tchain aNdw <<
1/tp), which comrespondsto the time regon where the
strethedexponetial time dependece of relaxationmod-
ulus G(t) appears,we obtain the following asymptaic
behaviorfor the stomgemodulusG’ (w)—Ge of a hetero-
geneoupolyme netwok

G’(CO) - Ge = Vdc:kaT . Cl : (wTD)Z (37)

whereC, =n -7+ 27151 336 = 23 7andvgm = v/Y iS
thenumbe of domairs of averagesizeperunit volume (v
is the numter of chainsegmentper unit volume).Thus,
the form of frequency dependece, which is typical of
regular polymer netwaks in the region of interchan
relaxation(seeEq. (29)), disappeas in the ca% of a het-
erogeneas netwak with domainstructure.In fact at low
frequency the storage modulus relaxes with a single
relaxationtime equalto the maximumrelaxationtime of
the netwok domainof avelagesize tp. The slopeof the
curveof G’ (w) on alogarithmic scde becomegyrederin
the caseof the heterogneouspolymer netwok ascom-
paredwith the homogeneouone(Fig. 3 and4). Notethat
the reduceddecraseof the stomgemodulus(G’ (w)—Ge)/
(G’ (0)—G¢) atw = 1/tp becomesequal to about2.64- a
and, therefore is much smaller than unity becausethe
distribution paranetera shoud be much smaler than 1/
No.

The loss modulusG” (w) of a hetergeneouspolymer
network at low frequencies(w < 1/tchan and w <€ 1/7p)
hasthefollowing asymptoic behavig (cf. Eq. (36)):

.o 1 123
G ((U) = VkBTn—O —T[2 (chhain)
33 Tchain
{1 e (38)

The position of the maximum of G” (w) of a heterog-
neousnetwork is not shifted as comparedto that of an
infinitely large regularnetwork (Fig. 5) becausets posk
tion is determinedby the characteistic frequency 1/t
corresponithg to the purely intrachain relaxation on a
scalesmaler than the distance betweencross-links.On
this scale the “long-range”hetgogeneityof a networkis
not manfestedyet. As a resut, the loss modulus G” (w)
is very slightly sensitiveto the network heterogneity of
thedomai type consideed (seeFig. 5 and6).

Conclusion

Themainresultsof this pape may be statedasfollows. If
a heterogeeouspolyme netwok is treatedasanensem
ble of non-inteacting cross-linkeddomairs of different
sizesthedecreaeof therelaxationmodulusof a netwok
at long times becanes much more rapid as compaed
with a homayeneousetwok. The algebraictime depen-
denceof relaxation modulus G(t) of regqular cross-linked
polymersis replacedby the strethedexponenial type of
time dependace of G(t) for hetergeneougpolymernet-
work systens. A similar (but much weaker) effect is
shownto be marifested in the storage modulus of a het-
erogeneas netwak. In the region of low frequencies,
which correspond to the region of stretdhied exponential
time dependenceof the relaxaton moduls, the storage
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modulusbehares as »?, i.e., more rapidly as compaed
with athreedimensonalregularnetwoik in which G’ (w)
~ »*2 In contastto theviscoelatic chamcteristicscorre-
spondingo the enepgy storagethelossmodulusis shown
to be very slightly sensitve to a heterog@neity of the
domaintype.
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