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Intr oduction
The dynamics of polymer networks is a very interesting
andnot completelyunderstoodproblemof polymer phys-
ics. In most theories dealing with long-time network
dynamics, regularpolymer networks with different topo-
logies have been studied[1–17] to describe the dynamic
behaviorof cross-linked polymers. A polymer network
hasbeenmodeledasa collectionof long flexible chains
connectedby junctions(cross-links). It hasbeenassumed
thatall network chainshaveidenticalcontour lengthsand
form a regular spatial structureof meshlike[1, 3–5,13–17] or
treeliketopologies.[8, 10–12]

Themainresults of theprevioustheoriesof viscoelastic
mechanical properties of regular polymer networksmay

be formulatedasfollows. Thecross-linkingof multi-seg-
mentalpolymer chainsin a networkstructureleadsto the
appearance of an additional long-time branch of the
relaxationspectrumdescribing the collective interchain
relaxation[1, 3,12]. The characteristic time parametercorre-
spondingto themaximumrelaxationtime schain of a chain
betweenneighboring network cross-links appears. This
time parameterdividesthe total relaxation spectrumof a
polymer network into two different regions. The first
regionis the intrachainspectrumwith timessmallerthan
the relaxationtime of a chainbetweenneighboringjunc-
tionsschain. This part of thespectrum is very similar to the
spectrumof a linearnot cross-linkedpolymer. Thesecond
region of the relaxationspectrumhastimes greater than

Full Paper: A dynamicmodel of a heterogeneouspoly-
mer network systemis proposed.A polymer network is
presented as an ensemble of cross-linked regions
(domains)of different sizes,the domainshavesimilarly
regularinternalstructures.To a first approximation,these
domainsare treatedindependentlyof eachother. Relaxa-
tion modulus,storagemodulus,and loss modulusof the
heterogeneouspolymer network are calculated.For the
purposeof averagingover all networkdomainsthe expo-
nentialnumberdistributionof chainsegmentsin domains
is used.This typeof distributionhasbeenpreviouslypro-
posedby oneof the authorsin the frameof the aggrega-
tion model. It is shown that a structure heterogeneity
introducedinto a network model accordingto the above
domain approachleads,at long times, to the stretched
exponentialtype of time dependenceof relaxationmodu-
lus insteadof the power-law dependencepredictedby the
theoriesdealingwith regularnetworks.The networkhet-
erogeneityalsoleadsto a morerapid decreasein the sto-
ragemodulusin the region of low frequencies,as com-
paredwith regularpolymernetworks.It is shownthat the
lossmodulusin theregionof its maximumis very slightly
sensitiveto the “long-range” network heterogeneity con-
sidered.
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schain andcorresponds to the long-scaleinterchainrelaxa-
tion processestypical of polymer networks.[1,3,5,12,17] The
relaxationspectrumH (s) (or the distribution function of
relaxationtimess on a logarithmic scale)is relatedto the
relaxationmodulusG(t) asfollows:[18]

G�t� � Ge�
Z

H�s� exp�ÿt=s�d ln s �1�

whereGe is the equilibrium modulus of a polymer net-
work. Both intra- and interchain parts of the relaxation
spectrumof regular polymer networks show the power-
law behavior. If a regularpolymer networkconsistingof
“bead and spring” Rouse chains[19] is considered, the
intrachain part of the relaxation spectrumH (s) has the
usual Rousean behavior s–1/2 (see, for example,
ref.[1, 3,5,12,17]). The behavior of the interchainpart of the
relaxationspectrumof a network dependsconsiderably
on the topology and connectivity of the network model
considered. For example,in the case of infini tely large
three-dimensionalregularnetworks (cubic or tetrahedral)
the interchaincollective part of the relaxationspectrum
behavesass–3/2, i. e., decreases more rapidly ascompared
with theintrachain spectrumcomponent.[1,3,17] Such a type
of relaxation spectrum behaviorleads to the correspond-
ing power-law time dependence of the relaxation modu-
lus G(t) of a regularpolymernetwork. In the caseof an
infinitely large cubic network, the relaxation modulus
G(t) decreasesast–1/2 at timessmaller thanthe relaxation
time schain of a chain betweencross-links and as t–3/2 at
longertimes.

The usage of regular models of polymer networks
represents the simplest approachto study the network
dynamics andallowsusto analyzequalitatively theeffect
of the cross-linking of polymer chains in a spatial net-

work structureon the viscoelastic properties. However,
the comparison of the predictions of regular network
models with the experimentis often impossible because
realcross-linkedpolymershavea heterogeneousstructure
asa rule. Thereis a great numberof possible typesof the
network structureheterogeneity. It may be, for example,
the distribution of molecular weights of network chains
betweencross-links,the existenceof regions with differ-
ent topology and cross-link density, the existenceof not
cross-linked amorphous domains, dangling chains etc.
Therefore, the problem of structureheterogeneity is of
greatimportance for theoretical considerationsof viscoe-
lastic properties of polymer networks. In this paper we
shall confineourselvesto theconsideration of oneexam-
ple of a network heterogeneity concerningthe existence
of regions with different properties in real polymer net-
works.

Dynamic modelof a heterogeneouspolymer
network
A randomcharacterof thecross-linkingprocessmaylead
to theexistenceof cross-linkedaswell asnot cross-linked
regions in a real network polymer. The cross-linked
regionsof differentsizesmaybeseparatedby theregions
consistingof thenot cross-linkedmacromolecules.A first
simplestapproximation seemsto consistof the indepen-
dent treatment of different cross-linkedregions.There-
fore, we propose the following dynamic model of a het-
erogeneousnetwork. A polymer network as a whole is
presented as an ensemble of cross-linked regions
(domains)of differentsizes,which relaxindependently of
eachother (Fig. 1). It is assumedthat eachdomainrepre-
sents a regular cubic network consisting of N6N6N

Fig. 1. Dynamicmodelof a heterogeneouspolymernetworkconsisting of
cross-linked regions(domains)of differentsizes
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cells. The polymer chains betweenneighboring cross-
links of thecubicnetwork domainsaremodeledby “bead
andspring” Rousechains.[19] Each multi-segmental Rouse
chaincontainsn0 beads(segments). Thequantity n0 is the
samefor all the domains forming a heterogeneousnet-
work, the domains differ from each other only by the
numberof cubic networkcells insideof thedomains.The
structure regularity (homogeneity) inside of network
domains allows us to use(after somemodifications) the
resultsobtainedin the theoriesdealingwith regularpoly-
mernetworks.

We assumethat the cubic network domains havesoft
boundaries (boundary junctions are not fixed) and are
embeddedin aneffectiveviscousmedium which is “com-
mon” for all thedomains.Theviscoelastic responseof an
ensembleof thenetwork domains to anexternal perturba-
tion producing a longitudinal velocity gradient in the
effective viscous medium is studied. In a certain sense,
theheterogeneousnetworkmodelconsideredis similar to
a polymer solution in which a cross-linking processis in
progress. In this case,the sufficiently large formations
alreadyhaving an internal network structuremove in a
realsolventandrelaxyet independently of eachother.

Sincea longitudinal velocity gradient produced by an
externalperturbation in an effective viscousmedium is
assumedto be thesamefor all networkdomains, thevis-
coelastic responseof a collection of domains maybeimi-
tatedby thebehaviorof anumberof generalizedMaxwell
models[18] (corresponding to viscoelastic domains of dif-
ferent sizes) connected in parallel. Therefore, the total
dynamic modulusof a heterogeneouspolymernetworkas
a whole is the sum of dynamic moduli of network
domains with different weights. Theserelative weights
(contributions) of dynamic moduli of different domains
shouldbe determinedby domainsizedistribution. Since
thenon-interacting network domainsof differentsizesare
assumedto relax independently, the domain model of a
heterogeneouspolymer network seems to be similar to
themodelof reversibleaggregation.[20–22] Theaggregation
model has been proposed by one of the authors for
describing the relaxation of amorphouspolymers. Some
related aspectsof structure heterogeneity of polymers
have beenalso discussedin ref.[23,24] In this paper, the
numberdistribution function of the aggregation model,
which obeys theexponential law,[20,22] will beusedfor the
averaging over all the domainsof a heterogeneousnet-
work. If each network domain is characterizedby the
numberof chain segments(“beads”) which it contains,
the distribution function of the numberof polymer seg-
mentsin thenetwork domainsn(y) is givenby[20,22]

n(y) = Cy2 exp[ –ay] (2)

whereC is a normalization constant.Parametera is deter-
minedasa = U0/kBT whereU0 is the energy of the smal-

lest domain.[20,22] The size of the smallest domain must
havean order of magnitude closeto the size of a cubic
networkcell (not smaller).

Parameter determinesthe average number y of chain
segmentsin thedomains, i. e.,theaveragedomainsize:

y�
R

yn�y�dyR
n�y�dy

X
3
a

�3�

Notethat theaveragedomainsizey X pyP is very close
to the quantity

��
p
p

y2P X 2
���
3
p

=a for the number distribu-
tion function considered. The network domain of the
averagesizeshould containa numberof chainsegments
much greaterthan those in a network cell becauseall
domainshavean internal network structurein thesystem
considered and, therefore,should be larger (not smaller)
thanthecubicnetwork cell. An elementarycell of a regu-
lar cubic network consistsof 3n0 chainsegments.There-
fore, the condition y S 3n0 should be fulfilled . This
meansthat theparametera X 3=y of thenumber distribu-
tion function hasto bemuch smaller thanunity for suffi-
ciently long chains,namely, as 1/n0.

Relaxationmodulus

Relaxationmodulusof a uniquedomain

At first, we considertheviscoelastic mechanicalbehavior
of a uniquedomainthat hasa three-dimensionalregular
network structure. It has beenshown[17,25,26] that in the
consideration of viscoelasticdynamicpropertiesof three-
dimensional meshlike regular networks consisting of
“bead and spring” Rousechains, intra- and interchain
relaxationprocessescanbetreatedseparately. Thecontri-
bution of small-scale intrachain motions to network
dynamics is shown to be very similar to the contribution
of not cross-linked chains with the same molecular
weight asthat of the chainsbetweencross-linksin a net-
work. The interchainlong-scale motionscanbe satisfac-
torily described using a simplified “coarse-grained”
model of a network.[4, 11,14–17,25,26] The coarse-grained
modelof a cubic network representsa collectionof beads
(junctions) connectedby springs into a unified regular
network structure. The elasticity constant K of a spring
betweenneighboringjunctions correspondsto that of a
multi-segmental Rousechain as a whole betweenthese
junctions. The friction constant & of a junction relativeto
the effective viscous medium mimics the friction of
halves of the network chains directly attached to the
given junction. Thus, in order to obtain the total relaxa-
tion modulusG(t) of a cubic polymer network of “bead
and spring” Rouse chains, it is sufficient to a good
approximation to sumthe relaxationmodulus GN(t) of a
coarse-grained network model and the relaxationmodu-



Viscoelasticdynamicpropertiesof heterogeneouspolymernetworkswith domainstructure 391

lus GC(t) of not cross-linked polymer chains with the
samemolecularweightasthosein thenetwork.[17,25,26]

The relaxation modulusGN(t) is presentedas a sum
over all the relaxation times sN of a coarse-grained net-
work model

GN�t� � Ge� 1
Vdom

3kBT
X
~h

exp�ÿt=sN�~h�� �4�

whereVdom is the volumeof a network domain andGe is
the equilibrium modulus of a network. The relaxation
times sN(~h� manifested in the mechanical relaxation of
thecoarse-grainednetwork modelaregivenby[14,16,25,26]

sN�~h� � 6smin

3ÿ cosh1 ÿ cosh2 ÿ cosh3

�5�

where smin is the minimum relaxation time of a coarse-
grainednetwork model(ath1;2;3 = p):

smin � &

24K
�6�

The interchainwave vector~h = (h1, h2, h3) determines
thephaseshift betweendisplacementsof neighboring net-
work cells. Its componentsin thecaseof a cubicnetwork
of finite sizearegivenasfollows:

h1;2;3 � p

N
k1;2;3; k1;2;3 � 1; :::;Nÿ 1 �7�

Since the network domain consideredhas finite size,
thefinit emaximum relaxation time smax existsas

smax � 4
p2

N2smin �8�

which is proportional to the squareof number of junc-
tions N along every Cartesiandirection of a cubic net-
work.

For the intrachaincomponentGC(t) of the total relaxa-
tion modulusof anetwork domain weobtain

GC�t� � 1
Vdom

N3N3 N3kBT
X
w

exp�ÿt=sC�w�� �9�

where 3N3 is the number of polymer chains in a cubic
network domain. The corresponding relaxation times
sC(w) aregivenby:

sC�w� � 2s0

�1ÿ cosw� �10�

Heres0 is therelaxationtime of a singlechainsegment
(atw = p)

s0 � &0

8K0

�11�

whereK0 is theelasticity constant of a Gaussiansubchain
(“spring”), and &0 is the friction constantof a “bead” of
the network chain betweencross-links. The intrachain
wavevector w correspondsto thephaseshift betweendis-
placementsof neighboringbeadsof a Rousechain[19,27]

w � kp

n0 � 1
k � 1 :::n0 �12�

where n0 is the numberof beadsin the chain between
cross-links.

The total relaxationmodulusof a domainis thesumof
relaxation moduli GN(t) and GC(t). Note that the mini-
mum relaxation time smin of a coarse-grained network
model (Eq. (6)) hasan order of magnitude equal to the
maximum relaxationtime schain of a chain betweenneigh-
boring junctions,[17] namely, smin X (p2/4)schain. The quan-
tity schain is givenby (seeEq.(10) atw = p/(n0 + 1)):

schain � 4
p2
�n0 � 1�2s0 �13�

Sincethe distribution function of the number of chain
segmentsin domains (Eq. (2)) will be usedfor the aver-
aging over all domains, it is necessaryto present the
relaxationmodulus of a uniquedomainas a function of
thenumber of chain segmentsy in thedomain. Thecubic
network domain consisting of y chainsegmentscontains
N3 cubic network cells with 3n0 segmentsper cell (i. e.
with three multi-segmental Rouse chains per network
cell). Therefore,onecanwrite thefollowing simpleinter-
relation:

y = 3n0N3 (14)

Finally, the relaxation modulus G(t; y) of a domain
consistingof y chainsegmentsis presentedasfollows

G�t; y� ÿGe � 3mchainkBTn0
1
n0

X
w

exp�ÿt=sC�
"

� 1
y

X
~h

exp�ÿt=sN�
�

�15�

where mchain is the number of network chains per unit
volume.Thefirst termin Eq. (15) correspondsto thecon-
tribution of intrachain relaxation, and the secondterm
describestheinterchain collective relaxationof a network
domain. The relaxation timesmanifestedin G(t; y) range
from the relaxation time of a single chain segments0

(Eq. (11)) to the maximum relaxation time smax(y) of a
cubic network domainof finite size (seeEq. (8)), which
mayberewrittenusing Eq. (14) as:

smax�y� � 4
p2

1
3n0

� �2=3

schainy
2=3 �16�
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Using Eq. (15) one can evaluate the asymptotic time
dependenceof relaxationmodulusG(t; y) of auniquenet-
work domain. The corresponding calculations are very
similar to thosecarriedout in ref.[17] At shorttimess0 a t
a schain, therelaxationmodulusG(t; y) behavesas

G�t; y� ÿGe X vkBT N
1
n0

N
6
p

N
������������
schain

t

r
�17�

where m = n0mchain is the number of chain segments per
unit volume. This power-law time behavior of G(t; y) is
typical of a single Rousechain.[18,19,27] At timesfrom schain

to smax(y) (seeEq. (16)) therelaxation modulusof a cubic
network domain hasthesametime behavior asthat of an
infini te regularcubic network in the regionof interchain
collective relaxation,[1, 3,14–17] namely:

G�t; y� ÿGe X mkBT N
1
n0

N
4
���
3
p

p2
N

schain

t

� �3=2

�18�

At longer times (t A smax(y)) we obtain the following
asymptotic behaviorfor the relaxationmodulusG(t; y)
of a networkdomain of finite size:

G�t; y� ÿGe X mkBT N
9p

���
3
p

4
N

1
y

N
smax�y�

t

� �

Nexp ÿ t
smax�y�

� �
�19�

One can seethat the relaxationmodulus G(t; y) of a
three-dimensionalnetwork domain of finite size has an
exponential decayat longesttimesbecausetherelaxation
spectrumof thedomainis limited by the finit e maximum
relaxation time smax(y) of thedomain asa whole.In other
words, each network domain consisting of y polymer
chainsegmentsat timesgreater thanits maximumrelaxa-
tion time smax(y) shows a simple relaxationbehavior with
a singlerelaxation time. Note that therelaxationmodulus
G(t; y) includesalso the power-law term (smax/t) which
hasmuchmoreweaktime dependence ascomparedwith
theexponential term.

Thus,therelaxationmodulusG(t; y) of auniquedomain
with internal cubic network structurehasthe power-law
time dependenciest–1/2 andt–3/2 in theintra- andinterchain
regionsof relaxationinsideof thedomain, respectively. At
timesgreaterthanthemaximumrelaxation time of a net-
work domain the relaxation modulus decreases rapidly
accordingto theexponential law (Fig. 2).

Relaxationmodulusof a heterogeneouspolymer
networkwith domainstructure

A heterogeneouspolymer network in thepresent paper is
modeled as an ensemble of independent cross-linked

domainsof differentsizes.As mentionedabove,in order
to obtaintherelaxationmodulusof theheterogeneousnet-
work asa whole, it is necessary to averagethe relaxation
modulusG(t; y) over all domains forming the network.
The network heterogeneity considered is long-range,it
beginsto bemanifestedon a scalegreaterthanthesizeof
an elementarynetwork cell. Therefore, the relaxation
modulusG(t) of a heterogeneouspolymer network as a
whole at timessmaller thanthe relaxationtime of a net-
work chainschain hasthe sametime behavior asthat of a
uniquedomain(seeEq.(17)) becausethepolymer chains
betweenneighboring cross-links inside of all domains
consistof anidentical number n0 of chainsegments.

At longer times (t S schain), the main contribution to
relaxationmodulus G(t) of a heterogeneousnetwork is
provided by the time regions in which the exponential
decay of moduli of network domains appears (see
Eq. (19)).Justthis exponential decayafter averaging over
all domains with numberdistribution function (Eq. (2))
determinesthe time dependence of G(t) of a heteroge-
neousnetwork asa whole.To evaluate the time behavior
of relaxationmodulusG(t) at long times, onecanusethe
Laplacemethod[28] of estimation of the asymptotic beha-
vior of integral with large dimensionless parameter
(t/schain S 1). Finally, at sufficiently long times(t S schain)
we obtain the following asymptotic behavior of the
relaxationmodulusG(t) for a heterogeneousnetwork

�G�t� ÿGe� X mdomkBT NC1 N �an0�1=5 N t
schain

� �3=10

Nexp ÿ t
s�

� �3=5
� �

�20�

Fig. 2. RelaxationmodulusG(t) of the three-dimensionalnet-
work systemsconsidered:an infinitely large regular cubic net-
work (solid line), a singlecubicnetworkdomainof average size
(dashedline), anda heterogeneousnetworkwith domainstruc-
ture(dottedline); heren0 = 20anda = 0.001
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whereC1 = 2–9/5 N 5–1/2 N 329/10 N p21/10L 34.4andmdom� m=y
is thenumber of domainsof averagesizeperunit volume
(m is thenumberof chainsegmentsperunit volume).The
characteristicrelaxationtime s* in thestretchedexponen-
tial term is closeto the maximumrelaxationtime sD of
the network domain of averagesize (see Eq. (16) at
y� y)

sD � 4
p2

1
an0

� �2=3

schain �21�

namely,

s* = C2sD (22)

whereC2 = 5–5/322/331/3 L 0.15.
Eq. (20) indicatesthat the relaxationmodulusof a het-

erogeneous polymer network after averaging over all
domains has the stretched exponential type of time
dependence: exp[ –(t/s*) 3/5]. The appearance of the
stretchedexponential time dependence is causedby the
existenceof the exponential term in the numberdistribu-
tion function n(y) of network domains (Eq. (2)). The
algebraic term(t/schain)3/10 in Eq. (20) is characterizedby a
much weaker time dependence as compared with
stretchedexponential termandarisesfrom thefactory2 in
thenumberdistribution used(seeEq. (2)). It is alsointer-
estingto note that the relative decreaseof the relaxation
modulusG(t) at timescorrespondingto the beginningof
the region of stretchedexponential dependence (i. e. at t
X sD) is given by (G(sD)–Ge)/(G(0)–Ge) L 0.14 N a.
Hence,the relaxationmodulusof a polymer network at t
X sD becomessmall becauseof the abovecondition a s
1/n0 wheren0 is the number of beads in a Rousechain
betweencross-links(n0 S 1 for sufficiently long chains).

It should be especially emphasizedthat the stretched
exponential time dependence of the relaxation modulus
of heterogeneousnetwork systems appearsbecausethe
averaging over all domains is performedusing the num-
ber distribution function n(y) containing the exponential
term (seeEq. (2)). Besidesthe numberdistribution func-
tion of the aggregationmodel[20–22], which hasbeenused
in this paper, therearemanyotherexamplesof exponen-
tial distributions. The exponential distribution seemsto
be the general origin of time dependenceof sucha type.
For example,the stretched exponential time dependence
of the relaxationmodulusmayappear dueto a broaddis-
tribution of the molecular weight of network chains,
which also obeysthe exponential law.[29] Another exam-
ple may be a network systemwith a domainstructure in
which the number of cross-links inside of the domains
fluctuatesdueto a randomcharacterof the cross-linking
processand,therefore, is governedby theGaussiandistri-
butionfunctionexp[ –(y–pyP)2/2pdy2P].

Thus, if a long-rangeheterogeneity of a cross-linked
polymer is takeninto account in the frame of the above

domain approach, thedecreaseof the relaxationmodulus
of a network at long timesbecomesmuch more rapid as
comparedwith a homogeneousnetwork. The power-law
time dependence of relaxationmodulus G(t) l t–3/2 of a
regular three-dimensionalnetwork in theinterchainregion
of relaxationis replacedby thestretchedexponential type
of timedependenceof therelaxationmodulus(Eq. (20)) in
thecaseof aheterogeneousnetworksystem(Fig. 2).

Complexpolymer systemsoften show decayobeying
the stretched exponential law, i. e. more rapid relaxation
than the power (algebraic) type of relaxation.Examples
include the local segmentalmotions in non-crystalline
polymers, the motions of polymer chains in entangled
polymer melts,and relaxation phenomenain other com-
plexcorrelatedsystems(see,for example, thewell-known
review of Ngai[30]). In thesesystems,thestrongcorrelation
betweenrelaxing unitshasan effect in slowing down the
relaxation.Another example is thedielectric relaxationin
glassymaterials,which hasbeentreatedin theframe of a
defect diffusion model.[31,32] In our case, the origin of the
appearanceof stretched exponential relaxationis related
to the broadsize distribution of non-interacting relaxing
units(domains)in aheterogeneouspolymernetwork. This
is similar to the situation in disordered orientational
glasses[33] where the non-exponential relaxation is also
causedmostlyby heterogeneousbroadening.

Theaboveconsiderablechangeof thetime dependence
of the relaxation modulus in the case of the heteroge-
neous polymer network as comparedwith the homoge-
neous one should be also manifested in the relaxation
spectrum. Therelaxation spectrumH (s) is determinedby
Eq. (1). This is a very important quantity becauseall the
viscoelastic characteristics corresponding to mechanical
relaxation(e.g. dynamicmodulusandviscosity) may be
calculated with the useof the relaxationspectrum.[18] At
short times smaller than the maximum relaxation time
schain of a chainbetweencross-links,the relaxation spec-
trum of a heterogeneousnetwork with domainstructure
showsusualRouseanbehavior:

H�s� X mkBT
1
n0

3
p

������������
schain

s

r
�23�

Sucha type of behavior is causedby the fact that the
network chains betweencross-linksin all the domainsof
a network haveidentical contour lengths,i.e. the hetero-
geneity of the considered type does not influence the
intrachainrelaxation.At long times (s S schain and s S
sD), the relaxation spectrum H (s) shows very rapid
decrease,namely,

H�s� X mdomkBT�an0�~C s

schain

� �3=2

exp�ÿ3�s=sD�3=2� �24�
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where ~C = 2–6/5 p4 39/2, mdom, is the numberof network
domains of average size per unit volume, and sD is the
maximum relaxationtime of thenetwork domain of aver-
age size (Eq. (21)). One can seefrom Eq. (24) that the
relaxation spectrum H (s) of a heterogeneousnetwork in
the long-time region of interchain (or “interdomain”)
relaxation is muchnarrower ascomparedwith the spec-
trum of an infinitely large regular three-dimensional net-
work, which hasthe power-law behaviors–3/2 (for exam-
ple,seeref.[1, 3,14,16,17]).

Storageand lossmoduli

Storageandlossmoduliof a uniquedomain

With the useof Eq. (15), the complexdynamicmodulus
G* (x;y) of a unique domain consisting of chain seg-
mentsis presentedasfollows:

G��x; y� � Ge� 3mkBT
1
n0

X
w

ixsC

1� ixsC

"

� 1
y

X
~h

ixsN

1� ixsN

�
�25�

Here m is the number of chain segments per unit
volume; sC are the intrachain relaxation times (see
Eq. (10), (11), and(12)), andsN arethe interchainrelaxa-
tion times of a cubic network domain (seeEq. (5), (6),
and (7)). Using Eq. (25), it is easy to obtain the storage
modulusG9 (x) of a uniquenetwork domain (realcompo-
nentof complexdynamicmodulusG* (x)):

G9�x; y� � Ge� 3mkBT
1
n0

X
w

�xsC�2
1� �xsC�2

"

� 1
y

X
~h

�xsN�2
1� �xsN�2

�
�26�

The storage modulus G9 (x; y)–Ge of a network
domainhasthe following behavior at extremely high fre-
quenciesx S 1/s0 (heres0 is the relaxation time of a sin-
gle chainsegment(Eq. (11))):

G9�x; y� ÿGe X 3mkBT 1ÿ p4

80
1

�xs0�2
" #

�27�

In the region of high frequencies(1/s0 A x A 1/schain),
thestoragemodulusof a domainbehavesas:

G9�x; y� ÿGe X mkBT
8
p

��������
xs0

p �28�

Such a form of frequency dependence of the storage
modulusis typical of a single Rousechain.[18,19,27] In the

region of low frequencies (1/schain a x a 1/smax(y)), the
storage modulus of a network domain has the same
behavioras that of a regular three-dimensionalpolymer
network in the region of interchain cooperative relaxa-
tion,[14,16,25,26] namely,

G9�x; y� ÿGe X mkBT
1
n0

16
���
3
p

p2
�xschain�3=2 �29�

whereschain is the maximumrelaxation time of a network
chainbetweenneighboring junctions(Eq. (13)).Notethat
for an infinitely large three-dimensionalnetwork sucha
typeof frequencybehaviorholdsup to zerofrequency. In
the caseof a cubic network domain of finit e size,which
containsy polymer segments,the relaxationspectrumis
limited by the finite maximum relaxation time smax(y) of
thedomain asa whole (seeEq. (16)). Therefore,at lower
frequencies(x a 1/smax(y)) we obtain the following
asymptotic frequencybehavior of the storagemodulus
G9 (x; y)–Ge of a networkdomain

G9�x; y� ÿGe X mkBT
1
n0

12
���
3
p

p2

x2�
��������������
smax�y�

p ���������
s3

chain

p
� �30�

which differs from that of an infini tely large regular net-
work (Eq. (29)).Thedecreaseof G9 (x; y) at low frequen-
cies becomes more rapidly in the caseof a domain of
finite size as compared with an infinitely large regular
network(Fig. 3 and4).

The lossmodulus G99 (x) of a uniquenetwork domain
(imaginary component of complex dynamic modulus
G* (x)) is givenby (seeEq. (25)):

Fig. 3. Dynamic storagemodulus G 9 (x) of an infinitely large
regular network (solid line), a single domain of averagesize
(dashedline), anda heterogeneousnetworkwith domainstruc-
ture(dottedline); heren0 = 10anda = 0.001
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G99�x; y� � 3mkBT
1
n0

X
w

xsC

1� �xsC�2
"

� 1
y

X
~h

xsN

1� �xsN�2
�

�31�

ThequantityG99 (x; y) is characterizedby theexistence
of themaximum, its positionis determinedby thereverse
relaxation time of a single Gaussiansegment 1/s0 (see
Fig. 5). At very high frequenciesx A 1/s0 (regionon the

right of the maximum of G99 (x; y)) the loss modulus
behavesas:

G99�x; y� X mkBT
p2

4
1

xs0
�32�

With the decreaseof frequency(1/schain a x a 1/s0)
(region on the left of themaximum of G99 (x; y)) the loss
modulushasthebehavior:

G99�x; y� X mkBT
8
p

��������
xs0

p �33�

Note that the frequencydependence of G99 (x; y) of a
network domain at frequenciesx A 1/schain is the sameas
that of a single Rousechain.[27] At low frequencies1/
smax(y) a x a 1/schain, thequantityG99 (x; y) showsa beha-
vior typical of a three-dimensional regular networks[14],
namely:

G99�x; y� X mkBT
1
n0

12
���
3
p

p2
�xschain�

1ÿ 4
5

�������������
xschain

p� �
�34�

In the case of an infini tely large regularnetwork, such
a type of frequency dependence holds up to frequencies
having an order of magnitudeequal to 1/(10schain). At
lower frequencies, the lossmodulusof an infini tely large
regular network behavesas(cf. Eq. (34)):

G99�x; y� X mkBT
1
n0

12
���
3
p

p2
�xschain� �35�

In thecaseof a network domainwhich is characterized
by the finit e maximum relaxation time smax(y) (see
Eq. (16)), we obtain the following asymptotic behavior
for the lossmodulusG99 (x; y) at low frequenciesx a 1/
smax(y):

G99�x; y� X mkBT
1
n0

12
���
3
p

p2
�xschain�

1ÿ
�����������������
schain

smax�y�
r� �

�36�

It is seenthattheslopeof acurveof G99 (x; y) for anet-
work domain of finite size at very low frequencies
changesascomparedto that for aninfinitely largeregular
network. Note that this effect is very weak(Fig. 5 and6).
It is determinedby the difference in the termswhich are
smaller than the main terms (lxschain) in the frequency
dependenceof G99 (x; y) by an order of magnitude(cf.
Eq. (34) and (36)). The weaknessof the effect is caused
by thefact thatthelossmodulusG99 (x; y) at low frequen-
cies(namely, the main secondterm in Eq. (31) at x a 1/

Fig. 4. Thefrequencydependenceof dynamicstoragemodulus
G 9 (x) atx a 1/schain; thedenotation of thecurvesis thesameas
in Fig. 3

Fig. 5. DynamiclossmodulusG 99 (x) of aninfinitely largereg-
ular network (solid line), a single domain of averagesize
(dashedline), anda heterogeneousnetworkwith domainstruc-
ture(dottedline); heren0= 10anda = 0.001
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smax(y)) is mostly determined by the relaxation time schain

of anetwork chainbetweencross-links(not themaximum
relaxation time smax(y) of a uniquedomainasa whole).

Storageandlossmoduliof a heterogeneouspolymer
networkwith domainstructure

To obtain the dynamic modulus G* (x) of a heteroge-
neouspolymer network as a whole, it is necessaryto
average the dynamic modulusG* (x; y) of a uniquenet-
work domainover all the domains in the systemconsid-
ered with the use of the number distribution function
given by Eq. (2). Storageand lossmoduli of a heteroge-
neouspolymer network asa whole at frequenciesgreater
thanthereverserelaxation time of a chainbetweencross-
links 1/schain havethesamefrequencybehavior asthoseof
a unique domain (seeEq. (27) and (28) for G9 (x) and
Eq. (32) and(33) for G99 (x)). This is causedby the fea-
ture of the type of the network heterogeneityconsidered
which beginsto bemanifestedon a scalegreaterthanthe
average distancebetweenneighboring cross-links(poly-
mer chains betweenneighboring cross-links insideof all
domains consist of an identical number n0 of Gaussian
segments).

In the regionof low frequencies(x s 1/schain andx s
1/sD), which correspondsto the time region where the
stretchedexponential time dependenceof relaxationmod-
ulus G(t) appears,we obtain the following asymptotic
behaviorfor the storagemodulusG9 (x)–Ge of a hetero-
geneouspolymer network

G9�x� ÿGe X mdomkBT N ~C1 N �xsD�2 �37�

where~C1 = p N 7 N 2–1 N 5–1 N 313/6 L 23.7andmdom� m=y is
thenumber of domains of averagesizeperunit volume(m
is the number of chainsegmentsper unit volume).Thus,
the form of frequency dependence, which is typical of
regular polymer networks in the region of interchain
relaxation(seeEq. (29)), disappears in the case of a het-
erogeneousnetwork with domainstructure.In fact at low
frequency, the storage modulus relaxes with a single
relaxationtime equalto the maximumrelaxationtime of
the network domainof averagesizesD. The slopeof the
curveof G9 (x) on a logarithmic scale becomesgreater in
the caseof the heterogeneouspolymer network as com-
paredwith thehomogeneousone(Fig. 3 and4). Notethat
thereduceddecreaseof thestoragemodulus(G9 (x)–Ge)/
(G9 (v)–Ge) at x X 1/sD becomesequal to about2.64 N a
and, therefore, is much smaller than unity becausethe
distribution parametera should be muchsmaller than 1/
n0.

The loss modulusG99 (x) of a heterogeneouspolymer
network at low frequencies(x s 1/schain andx s 1/sD)
hasthefollowing asymptotic behavior (cf. Eq. (36)):

G99�x� X mkBT
1
n0

12
���
3
p

p2
�xschain�

1ÿ 34=3

4

������������
schain

sD

r� �
�38�

The positionof the maximum of G99 (x) of a heteroge-
neousnetwork is not shifted as comparedto that of an
infinitely large regularnetwork(Fig. 5) becauseits posi-
tion is determinedby the characteristic frequency 1/s0

corresponding to the purely intrachain relaxation on a
scalesmaller than the distance betweencross-links.On
this scale,the “long-range”heterogeneityof a networkis
not manifestedyet. As a result, the lossmodulus G99 (x)
is very slightly sensitiveto the networkheterogeneityof
thedomain typeconsidered(seeFig. 5 and6).

Conclusion
Themainresultsof this paper maybestatedasfollows. If
a heterogeneouspolymer network is treatedasanensem-
ble of non-interacting cross-linkeddomains of different
sizes,thedecreaseof therelaxationmodulusof a network
at long times becomes much more rapid as compared
with a homogeneousnetwork. The algebraictime depen-
denceof relaxation modulus G(t) of regular cross-linked
polymersis replacedby thestretchedexponential type of
time dependenceof G(t) for heterogeneouspolymernet-
work systems. A similar (but much weaker) effect is
shownto be manifested in the storagemodulus of a het-
erogeneous network. In the region of low frequencies,
which corresponds to the regionof stretchedexponential
time dependenceof the relaxation modulus, the storage

Fig. 6. The frequencydependenceof dynamic loss modulus
G 99 (x) atx a 1/schain; thedenotation of thecurvesis thesameas
in Fig. 5
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modulusbehaves asx2, i. e., more rapidly as compared
with a three-dimensional regularnetwork in which G9 (x)
l x3/2. In contrastto theviscoelastic characteristicscorre-
spondingto theenergy storage,thelossmodulusis shown
to be very slightly sensitive to a heterogeneity of the
domaintype.
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