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Abstract A fundamental and long-standing problem in polymer physics is to deduce the
relationship between the topology of a polymer and its dynamics. Generalized Gaussian
structures (GGS), originating from the familiar Rouse model, represent a valuable tool
for this purpose. This review summarizes theoretical efforts that have been undertaken in
studying the dynamics of polymer systems with complex internal topologies by employ-
ing the GGS approach. The dynamic properties of a wide range of polymeric structures
(ranging from polymer networks to dendritic and hybrid polymers) are discussed, while
emphasizing systems that can be treated analytically (or semi-analytically). These studies
provide considerable insight into the problem of relating the structure of a polymer to its
dynamics. In many cases the GGS-treatment represents a first step in understanding the
dynamics of polymers, and it may serve as a reference point for the development of more
realistic models.

Keywords Polymers · Dynamics · Theory · Gaussian Structures · Networks · Dendrimers
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1
Introduction

One of the basic challenges in polymer physics is to understand how the un-
derlying geometries – and especially the topologies – of polymeric materials
affect their dynamic behavior. This problem has a long-standing history and
is becoming of increased importance as new polymeric materials with more
and more complex architectures are synthesized. Polymers, being intricate
systems, demonstrate a wide range of dynamic features that cannot be fully
understood without elucidating the connections between structure and dy-
namics. Therefore, theoretical models that allow analytical insights into this
problem are extremely valuable.

The pioneering ideas of Rouse, starting with the bead-and-spring model
for linear flexible chains [1, 2] resulted in a basic approach that could be used
to treat the dynamics of polymers. This (essentially coarse-grained) model
was designed to study dynamic features of flexible macromolecules on scales
larger than the distances covered by a few monomers: in the Rouse model
a polymer chain is envisaged as being a sequence of beads connected by
harmonic entropic springs. As such, the approach is very general (univer-
sal). Furthermore, the solvent (or, the surrounding medium consisting, say, of
other polymer chains in the case of concentrated polymer systems) is substi-
tuted by a continuum, which is felt by the chain’s beads through the viscous
friction and the thermal noise. In a certain sense Rouse’s approach leads to
a “minimal” model which is very simplified, but which captures the most
fundamental feature that distinguishes macromolecules from simple liquids,
namely the polymer’s connectivity. In spite of the fact that it disregards sev-
eral important features, the Rouse model captures the dynamic properties of
many systems, including concentrated polymer solutions and melts of rather
short chains [2, 3].

The extension of Rouse’s approach from linear chains to other polymer
systems is quite straightforward and leads eventually to the concept of gen-
eralized Gaussian structures (GGS), which are the subject of this review. In
the framework of the GGS approach, a polymer system is modeled as a collec-
tion of beads (subject to viscous friction), connected to each other by means
of elastic springs in a system-specific way. Initially, the GGS concept was
inspired by the study of cross-linked polymer networks; however, its applica-
tions have turned out to cover large classes of substances, such as dendritic
polymers, hybrid polymers, and hierarchically-built structures.

A GGS, being a generalization of the Rouse model, has all the limitations
of its predecessor: it does not account for excluded volume interactions and
for entanglement effects. However, one may note that excluded volume ef-
fects are often screened. This occurs especially in rather dense media, such as
dry polymer networks and polymer melts [2, 4]. The entanglement effects, in
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turn, are not dominant as long as one stays below the entanglement limit. In
the case of polymer networks this means high densities of cross-links, which
then implies that the network strands between the cross-link points are rather
short. The hydrodynamic, solvent-mediated interactions are also generally
screened in dense systems [2]. We will not discuss their role in this review and
we wish only to point out that they can be incorporated in the GGS as in the
Zimm model, in a pre-averaged manner [5].

Bearing in mind all of the above restrictions (which may influence the
global picture, depending on the situation at hand), the GGS approach rep-
resents an important step in the theoretical understanding and treatment of
the dynamics of complex polymer systems. The basic simplicity of the GGS-
approach often allows theoretical (analytical or semi-analytical) solutions
to dynamical problems, even for very intricate polymer architectures. This
great advantage is lost when the models become more and more involved,
when they include interactions which the GGS disregards; such additions cer-
tainly make the models more realistic, but they also make them less tractable
analytically. This eventually leads to a situation in which only computer sim-
ulations may help; these, on the other hand, are in general restricted to
much shorter time domains than the temporal ranges accessible through GGS
approaches.

In this article we review theoretical works which have employed the GGS
model. We start – evidently – with the classical Rouse chain [1], but we will
emphasize the developments that have occurred over the last decade. We
want to stress from the beginning that our paper is essentially devoted to
the dynamics of polymeric systems; a detailed analysis of the statistical equi-
librium properties of Gaussian structures is beyond the scope of this paper.
Also, we do not aim to provide an exhaustive exposition of the GGS litera-
ture. Our choice of topics reflects in large part our research interests and is,
in this sense, biased. We would also like to point out that our choice cov-
ers only limited classes of complex polymeric systems, and that we focus on
such particular systems in which one can attain, to a large degree, an (almost)
analytical solution of the dynamical problem.

Our review starts with the general formulation of the GGS model in Sect. 2.
In the framework of the GGS approach many dynamical quantities of experi-
mental relevance can be expressed through analytical equations. Because of
this, in Sect. 3 we outline the derivation of such expressions for the dynamical
shear modulus and the viscosity, for the relaxation modulus, for the dielectric
susceptibility, and for the displacement of monomers under external forces.
Section 4 provides a historical retrospective of the classical Rouse model,
while emphasizing its successes and limitations. The next three sections are
devoted to the dynamical properties of several classes of polymer networks,
ranging from regular and fractal networks to network models which take into
account structural heterogeneities encountered in real systems. Sections 8
and 9 discuss dendrimers, dendritic polymers, and hyperbranched polymers.
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Finally, we end the review with the so-called hybrid polymers, which dis-
play several levels of organization; examples for two-level organization are
networks bearing dendritic wedges, dendrimer-based polymer networks, and
regular lattices built from highly disordered subunits.

2
Generalized Gaussian Structures: The Model

In this section we formulate the theoretical framework of the so-called gen-
eralized Gaussian structures [6–9]. A generalized Gaussian structure (GGS)
represents the extension of the classical Rouse model [1, 2], developed for linear
polymer chains, to systems of arbitrary topology: it is modeled as a structure
consisting of Ntot beads connected by harmonic springs, see Fig. 1. For simpli-
city, all of the beads of the GGS are subject to the same friction constant ζ with
respect to the surrounding viscous medium (the solvent). The GGS-approach
is essentially a coarse-grained one: The friction constant of the GGS beads mir-
rors the overall friction of polymer fragments directly attached to a given point
(bead). In turn, the chain fragments between the beads are assumed to be long
enough, so that they obey Gaussian statistics. Normally, a chain fragment of
about ten monomers fulfills this requirement. This allows each chain fragment
to be satisfactorily modeled by an elastic (entropic) spring.

The potential energy of the GGS in the absence of external forces, Uelast,
contains the elastic contributions of the harmonic springs (bonds) connected
to each other:

Uelast({R}) =
K
2

∑

bonds

[Rn – Rm]2 =
K
2

Ntot∑

n=1

Ntot∑

m=1

AnmRnRm , (1)

Fig. 1 (A) Schematic representation of the bead-and-spring Rouse chain and (B) a particu-
lar example of a GGS
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where Rn(t) = (Xn(t), Yn(t), Zn(t)) and Rm(t) = (Xm(t), Ym(t), Zm(t)) are the
position vectors of the nth and mth GGS beads, respectively. The summation
in the first sum of Eq. 1 goes over all pairs of beads n, m directly connected
by elastic springs (bonds). The quantity K = 3kBT/b2 is the elastic constant of
a harmonic spring, where kB is the Boltzmann constant, T is the temperature,
and b2 is the mean square end-to-end distance for the unstretched spring. On
the right-hand-side (rhs) of Eq. 1 we remark that the potential energy Uelast
can be represented through the connectivity matrix A =

(
Anm

)
of the given

GGS, which is also called the Kirchhoff matrix or the generalized Rouse ma-
trix [6, 7, 10–12]. The connectivity matrix A contains all of the information
about the topology of the GGS in question and is constructed as follows. Start-
ing with all matrix elements equal to zero, we set the non-diagonal element Anm
equal to (– 1) if the nth and mth beads are directly connected by a spring (oth-
erwise, Anm stays equal to zero). The diagonal element Ann is set to equal the
number of springs (bonds) emanating from the nth bead. Obviously, det A = 0
by construction and, therefore, at least one of its eigenvalues vanishes. If the
structure does not separate into disjointed, unconnected substructures then
the vanishing eigenvalue is non-degenerate. Note that for a linear polymer
chain this procedure leads to the well-known Rouse matrix [1, 2].

The dynamics of the GGS are described by a set of linearized Langevin
equations of motion. In addition to the friction and elastic forces, one has also
stochastic forces due to the random collisions of the solvent with the solute
(the GGS beads) and, in general, a superimposed field due to forces external
to the polymer system. We note that at the time-scales usually treated in the
study of polymers, the inertial term is rather unimportant; thus we neglect it.
Taking all this into account, the Langevin equation of motion for the lth bead
of the GGS reads:

ζ
dRl(t)

dt
+ K

Ntot∑

m=1

AlmRm(t) = f l(t) + F(ext)
l (t) . (2)

Here f l(t) are the stochastic forces and F(ext)
l (t) is the external force act-

ing on the lth GGS bead. Because of the fluctuation-dissipation theorem, the
stochastic forces (thermal noise) f l(t) are connected with the dissipative force
(friction). In Eq. 2 the thermal noise f l(t) is assumed to be Gaussian with
zero mean value, so that one has 〈 f l(t)〉 = 0 and 〈 flα(t)fmβ(t′)〉 = 2kBTζδlmδαβ

δ(t – t′) (here α and β denote the x, y, and z directions).
It is important to keep in mind (see the “Introduction”) that the GGS ap-

proach provides a rather simple description of polymer systems; it does not
take into account interactions such as the excluded volume effects or entan-
glements. In some special cases (such as for polymer melts or dry polymer
networks) the excluded volume interactions may be screened [2, 4]. The en-
tanglement effects, in turn, are quite small for sufficiently short polymer
chains [3]. Also, our GGS treatment here does not account for hydrodynamic
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interactions which may be important in dilute polymer solutions. Note in this
regard that the latter interactions may be included in the theory in a simpli-
fied, pre-averaged fashion [5, 13]. However, as will be demonstrated below, in
spite of all these restrictions (crucial in some special cases), the GGS approach
often leads to a reasonable description of polymer dynamics, allowing (due
to its simplicity) analytical insights into the problem. Note that, despite the
fact that we concentrate here mostly on homopolymers, the GGS approach al-
lows extensions to heteropolymers, by allowing us to include several classes of
beads and bonds into the picture (these beads and bonds may differ in their
friction and elasticity constants, respectively) [14–21]. Thus, the GGS model
can serve in many cases as a primary basis for understanding the fundamen-
tal problem of polymer physics, namely: how does the topology of a polymer
affect its dynamical properties?

3
Target Dynamical Quantities

3.1
Mechanical Viscoelastic Relaxation

3.1.1
Dynamical Shear Modulus (Storage and Loss Moduli) and Viscosity

We start our exposition with basic dynamical features of polymers (often
probed experimentally) and focus on mechanical relaxation. Here we en-
counter one of the most familiar properties of polymers, namely viscoelastic-
ity. In general, polymers do not behave like solids or liquids; instead, they take
an intermediate position, by which elastic or plastic behavior depends on the
time-scale of the process under observation.

It is the aim of this subsection to present the derivation of analytic vis-
coelastic expressions in the GGS framework. As before, we take the GGS
structure to be embedded in the viscous medium; for example, starting with
a dilute polymer solution, the medium is given by the solvent. To measure the
mechanical properties, one creates a macroscopic perturbation (strain) in the
embedding medium. This external perturbation produces, in turn, a meso-
scopic strain at the level of the polymer (GGS). A subsequent change of the
polymer’s configuration leads to the relaxation of the stress in the sample,
which can be measured, allowing us to determine, for instance, the dynamic
modulus.

Let us consider the influence of a flow (or velocity) field in the solvent. In
terms of the Langevin equations of motion, Eq. 2, we then have [2, 22]:

F(ext)
l (t) = ζV l(t) , (3)
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where V l(t) is the velocity of the solvent at the location of the lth GGS bead,
given by the position vector Rl(t). Focusing now on shear flow, the velocity
field may be written as V l(t) = (gYl(t), 0, 0) where g is the velocity gradient.
Such a two-dimensional flow can be generated in a polymer solution between
two parallel plates, by letting one of them move. To obtain the frequency-
dependent dynamic modulus and viscosity we consider the case of an oscilla-
tory flow, where the velocity gradient g obeys g = g0 exp(iωt) [2, 3, 22]. Then
the perturbation of the solvent becomes:

Vxl(t) = g0
[
exp(iωt)

]
Yl(t) , Vyl(t) = 0 and Vzl(t) = 0 . (4)

Furthermore, we assume that the applied velocity gradient g is small enough,
so that the shear stress depends linearly on it; this is the domain of linear
viscoelasticity.

Now the viscoelastic response of the polymer can be computed in two
ways. The first consists of the direct evaluation of the stress arising in the
polymer due to the strain induced by the perturbed viscous medium (sol-
vent). The second way (which is in many ways equivalent to the first) is to
calculate the additional virtual work which arises in the total system due to
the presence of the polymer. Detailed descriptions of both methods can be
found elsewhere [1, 2, 5, 9, 22–25]. Here we apply the second method, based
on virtual work, in order to calculate the dynamic modulus and the viscosity.

The additional work W (the increase in energy loss) per unit volume and
per unit time due to the presence of GGS in the solvent is given by [22]:

W =–
1
V

Ntot∑

l=1

〈Fl ·V∗
l 〉 =–

1
V

g0 exp(– iωt)
Ntot∑

l=1

〈Fxl ·Yl〉 . (5)

Here Fl is the force by which the perturbed viscous medium acts on the lth
bead of the GGS and V l is the velocity of the medium at the position of the
lth GGS bead. Now V l is given by Eq. 4 and the asterisk means complex con-
jugate; furthermore, V is the total volume of the system and 〈· · ·〉 denotes the
average over the GGS configurations. Inserting the external forces imposed by
the shear flow (see Eqs. 3 and 4) into Eq. 2 leads to the following set of equa-
tions of motion for the Cartesian coordinates of the position vectors of the
GGS beads Rl(t) = (Xl(t), Yl(t), Zl(t)):

ζ

[
dXl(t)

dt
– g0 exp(iωt)Yl(t)

]
+ K

Ntot∑

m=1

AlmXm(t) = fxl(t) , (6)

ζ
dYl(t)

dt
+ K

Ntot∑

m=1

AlmYm(t) = fyl(t) , (7)

and a similar equation for Zl(t). Note that due to the shear character of the
external forces (the X component of the perturbation velocity of the sol-
vent depends on the Y component of the position vector of the bead on
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which the perturbation acts), Eq. 6 and Eq. 7 for the X and Y coordinates
get coupled. The force Fxl in Eq. 5 is due to the action of the perturbed
viscous medium on the X coordinate of the lth GGS-bead. Thus, one has
Fxl = ζ[Ẋl – g0 exp(iωt)Yl]. Therefore, we can simplify Eq. 5 using Eq. 6. This
leads to

W =
1
V

g0 exp(– iωt)K
Ntot∑

m=1

Alm
〈
Xm(t) ·Yl(t)

〉
. (8)

To proceed further it is necessary to to transform the Cartesian coordinates R
to the normal coordinates Q:

Rl(t) =
Ntot∑

k=1

ClkQk(t) . (9)

Since the perturbation of the viscous medium is assumed to be small
(|g| � 1), we can use the normal coordinates of the unperturbed GGS (in the
absence of any external force F(ext)

l (t), see Eq. 2) for our purposes. Then the
transformation given by Eq. 9 simultaneously diagonalizes the potential en-
ergy Uelast of the unperturbed GGS, see Eq. 1, and preserves the diagonal form
of the dissipative function Rdiss:

Uelast =
K
2

Ntot∑

l=1

Ntot∑

m=1

AlmRlRm =
K
2

Ntot∑

k=1

λkQ2
k (10)

and

Rdiss =
ζ

2

Ntot∑

l=1

Ṙ2
l (t) =

ζ

2

Ntot∑

k=1

Q̇2
k . (11)

Here λk are eigenvalues of the connectivity matrix A of the GGS. Each normal
coordinate Qk = (Q1k, Q2k, Q3k) has a simple time behavior: it decays expo-
nentially with time, Qk(t) � Qk(0) exp(– t/τk), where τk is introduced through

τk =
τ0

λk
, (12)

and τ0 = ζ/K is the characteristic relaxation time of the GGS. The normal
mode transformation given by Eq. 9 reduces Eq. 8 to the following form:

W =
1
V

g0 exp(– iωt)K
Ntot∑

k=2

λk
〈
Q1k(t) ·Q2k(t)

〉
. (13)

Now the work W is fully determined by the correlation functions
〈Q1k(t) ·Q2k(t)〉. Note that in Eq. 13 the summation starts with k = 2, since we
denote the vanishing eigenvalue (which is always present in a free-floating
GGS) by λ1, hence λ1 = 0. The quantity 〈Q1k(t) · Q2k(t)〉 can be easily com-
puted from the equations of motion, Eqs. 6 and 7. Here we just outline the way
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to do it. After the normal mode transformation of Eqs. 6 and 7, both equa-
tions are multiplied by Q2k(t) and averaged over the configurations. In this
way one has from Eqs. 6 and 7:

ζ
d
dt

〈
Q1k ·Q2k

〉
+ 2Kλk

〈
Q1k ·Q2k

〉
– ζg0 exp(iωt)

〈
Q2

2k

〉
= 0 (14)

and

1
2
ζ

d
dt

〈
Q2

2k

〉
+ Kλk

〈
Q2

2k

〉
= kBT . (15)

Equation 15 has the equilibrium solution
〈
Q2

2k

〉
= kBT/Kλk. Inserting this

solution into Eq. 14, one finally obtains for 〈Q1k(t) ·Q2k(t)〉 (by taking it pro-
portional to g0 exp[iωt]):

〈
Q1k(t) ·Q2k(t)

〉
= kBTg0 exp(iωt)

τk/2
Kλk[1 + iωτk/2]

, (16)

where we used Eq. 12. This leads immediately to the following closed form for
W:

W = g2
0

1
V

kBT
Ntot∑

k=2

τk/2
1 + iωτk/2

. (17)

The quantity W is directly related to the complex dynamic viscosity η∗
through W(ω) = g2

0η
∗(ω) [2, 22]. Therefore, one has for η∗:

η∗(ω) = νkBT
1

Ntot

Ntot∑

k=2

τk/2
1 + iωτk/2

, (18)

where we introduced ν = Ntot/V, the number of GGS beads per unit volume
of polymer solution. Now, because of the relation G∗ = iωη∗ [1–3, 5, 22], the
dynamic modulus G∗(ω) is given by:

G∗(ω) = νkBT
1

Ntot

Ntot∑

k=2

iωτk/2
1 + iωτk/2

. (19)

We recall that so far we considered dilute polymer solutions. It is notewor-
thy that even for concentrated solutions, as long as the entanglement effects
are still negligible (this holds for polymers of low molecular weight), both
the complex dynamic modulus and the viscosity continue to follow the struc-
ture of Eqs. 19 and 18, the only difference [3] being a change in the prefactor
νkBT. Given that we are mostly interested in the frequency dependences of the
shear dynamic modulus and of the viscosity, we will present in the following
the viscoelastic properties of the GGS mostly in terms of reduced quantities.
As an example, in the case of the shear modulus G∗(ω) = G′(ω) + iG′′(ω), the
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reduced storage, [G′(ω)] and loss, [G′′(ω)], moduli read:

[G′(ω)] = G′(ω)/νkBT =
1

Ntot

Ntot∑

k=2

(ωτk/2)2

1 + (ωτk/2)2 (20)

and

[G′′(ω)] = G′′(ω)/νkBT =
1

Ntot

Ntot∑

k=2

ωτk/2
1 + (ωτk/2)2 . (21)

In turn, for the reduced shear viscosity [η′(ω)] (we recall that η∗(ω) = η′(ω) –
iη′′(ω)) we have:

[η′(ω)] = η′(ω)/νkBT =
1

Ntot

Ntot∑

k=2

τk/2
1 + (ωτk/2)2 . (22)

Here [η′(ω)] is meant to be the viscosity due to the polymer (GGS) only,
the contribution of the viscosity of the solvent being assumed to be already
subtracted from Eq. 22. Note that the relaxation times involved in the me-
chanical relaxation, τk/2 in Eqs. 20, 21, and 22, are half those of the normal
modes, Eq. 12. This is a direct consequence of the fact that only the second
moments of the displacements (or, alternatively, only the 〈Q2〉) contribute to
the mechanical viscoelastic properties, as may be verified by reconsidering
the derivation given above. As we will demonstrate in the following, this is
not the case for the dielectric relaxation. It is instructive to emphasize that the
derivation presented here does not use any assumptions about the topology
of the GGS system. Therefore, the expressions for the shear dynamic modulus
and the viscosity, Eqs. 20, 21, and 22, hold for arbitrary GGS topologies. Note
also the fundamental fact that the eigenfunctions of the connectivity matrix A
of the GGS do not appear: in the GGS-scheme the shear modulus and the
viscosity depend only on the eigenvalues of A. Thus, in order to be able to
evaluate G′(ω) and G′′(ω) (as well as η′(ω)), it suffices to determine the eigen-
values λk (or the relaxation times τk) only. This simplifies our consideration
of the dynamics of the particular GGS systems we are interested in.

3.1.2
Time-Dependent Relaxation Modulus and Relaxation Spectrum

We turn from the frequency-dependent shear modulus and viscosity consid-
ered above to the time-dependent relaxation modulus. As mentioned in the
previous section, we focus on the linear viscoelastic domain, in which the
shear stress σ(t) depends linearly on the velocity gradient g(t) [2]. The relax-
ation modulus G(t) is now implicitly introduced through a relation between
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g(t) and the ensuing stress σ(t):

σ(t) =

t∫

–∞
G(t – t′)g(t′) dt′ (23)

and, using g(t) = g0 exp(iωt) ,

σ(t) = g0 exp(iωt)

∞∫

0

G(τ) exp(– iωτ) dτ . (24)

On the other hand, the stress σ(t) imposed on the GGS by the pertur-
bation of the viscous surrounding medium can be computed based on
the additional work W due to the presence of the GGS; one finds that
σ(t) = g0 exp(iωt)(1/iω)G∗(ω) where G∗(ω) is given by Eq. 19, see for ex-
ample [2, 22, 24, 25]. Equating this expression to Eq. 24 leads to the connec-
tion between the complex shear modulus and the relaxation modulus:

G∗(ω) = iω

∞∫

0

G(τ) exp(– iωτ) dτ . (25)

Combining it with Eqs. 20 and 21 for the real and the imaginary components
of G∗(ω) results in a simple expression for G(t). We write it in the reduced
form

[G(t)] = G(t)/νkBT =
1

Ntot

Ntot∑

k=2

exp
(

–
2t
τk

)
, (26)

where we divided the relaxation modulus G(t) by the factor νkBT, with ν

being the number of GGS beads per unit volume. One should note that the
equilibrium modulus Ge (which is zero for GGS in dilute solutions but may
take a non-zero value in the case of, say, dry polymer networks) is not in-
cluded in Eq. 26. Thus, [G(t)] describes only the transient time-dependent
evolution of the system and vanishes at very long times.

A physically straightforward interpretation of the relaxation modulus
[G(t)] is that it represents the response of the stress to a shear jump [2, 9].
Furthermore, the relaxation modulus [G(t)] (as well as the dynamic shear
modulus [G∗(ω)]) can be rewritten in terms of the logarithmic density of
relaxation times, the so-called relaxation spectrum H(τ) [3, 26]:

[G(t)] =

∞∫

0

H(τ) exp(– t/τ) d ln τ . (27)
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If one has a discrete set of relaxation times, the relaxation spectrum can be
represented as a sum of delta functions (see Eqs. 27 and 26):

H(τ) =
2

Ntot
τ

Ntot∑

k=2

δ
(
τ –

τk

2

)
. (28)

In the case of a continuous spectrum of eigenvalues, in other words when the
eigenvalues λ(ξ) are defined by some continuous variable ξ , the relaxation
spectrum H(τ) can rewritten as (see [12] and also Sect. 7.5.1):

H(τ) =–
1

Ntot

dξ

d ln τ
. (29)

It is now important to note that the relaxation spectrum (the eigenvalue spec-
trum of the GGS) itself determines many important dynamical features. In
particular, it fixes G(t) and G∗(ω) through Eqs. 27 and 25. Also, global aspects
such as scaling carry over. Thus, if the relaxation spectrum of the particu-
lar GGS decays as τ–α where α > 0, the viscoelastic dynamical properties of
the GGS also scale, so that both the storage modulus G′(ω) and the relaxation
modulus G(t) exhibit power-law behavior; one finds, using Eqs. 27 and 25,
that G′(ω) ∼ ωα and G(t) ∼ t–α.

3.2
Dielectric Relaxation

Besides mechanical viscoelastic experiments, one can also perform dielec-
tric relaxation measurements, which constitute another well-established tech-
nique in polymer physics. Dielectric relaxation is related to the frequency-
dependent complex dielectric susceptibility, ε∗(ω). One usually focuses on
∆ε∗(ω), which is introduced as follows:

∆ε∗(ω) =
ε∗(ω) – ε∞

ε0 – ε∞
. (30)

In Eq. 30, ε0 and ε∞ denote the limiting low- and high-frequency dielectric
constants, respectively. In general, for the ∆ε∗(ω) of polar molecules embed-
ded in non-polar solvents under an oscillatory electric field E = E0 exp(iωt)
we have [27]:

∆ε∗(ω)�
∞∫

0

(
–

d
dt

C0(M; t)
)

exp(– iωt) dt , (31)

when the local fields are not important. In Eq. 31 C0(M; t) is the normal-
ized autocorrelation function of the total dipole moment M(t) of the polymer
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system:

C0(M; t) =
〈M(0)M(t)〉

〈M2(0)〉 . (32)

In general, the expression for ∆ε∗(ω), Eq. 31, can not be reduced to a simple,
compact form. However, we proceed to show that this becomes possible under
certain conditions.

Here we focus on the dielectric response of a polar GGS whose bonds
(springs) possess dipole moments directed along them (the material is then
of type A following Stockmayer’s classification) [22, 28, 29]. In other words, in
the model one assigns a longitudinal dipole moment mj to each bond j of the
GGS; the magnitude of every mj is directly proportional to the length of the
jth bond, but its orientation is arbitrary. The total dipole moment M(t) of the
GGS is given then by:

M(t) =
Nbond∑

j=1

µjPj(t) , (33)

where Nbond is the total number of bonds of the GGS, µj = djµ is the dipole
moment per unit length, dj ∈ {+ 1, – 1} gives the orientation, and Pj = Rl – Rm
is the end-to-end vector of the jth bond between the lth and the mth GGS
beads.

To proceed, we assume that the orientations of the dipole moments {mj}
along the GGS bonds (defined by dj) are random and uncorrelated [30–32].
This key feature simplifies the situation considerably. Then, for the autocor-
relation function of M(t), after averaging over all possible distributions of
bonds’ orientations, with the average denoted below by 〈· · ·〉orient (here we
follow [31] closely), we have:

〈〈M(0)M(t)〉〉orient =
Nbond∑

j=1

Nbond∑

i=1

µ2〈djdi〉orient〈Pj(0)Pi(t)〉 (34)

= µ2
Nbond∑

j=1

〈Pj(0)Pj(t)〉 .

In deriving Eq. 34 we made use of the condition of random orientation,
〈djdi〉orient = δji. Equation 34 can be simplified further with the help of the
normal mode transformation, see Eq. 9:

〈〈M(0)M(t)〉〉orient = µ2
Ntot∑

k=1

〈Q2
k〉 exp(– t/τk)

Nbond∑

j=1

(
C( j)

lk – C( j)
mk

)2
, (35)

where we used the orthogonality of the normal modes Q and also their sim-
ple exponential decay with time: 〈Qk(0)Qk′(t)〉 = δkk′ 〈Q2

k〉 exp(– t/τk). Here, as
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before, τk = τ0/λk. In Eq. 35 the superscript j of C( j)
lk and of C( j)

mk recalls that
bond j is determined by Rl and Rm; in other words Pj = Rl – Rm. The quan-
tity 〈Q2

k〉 can be easily determined from the Langevin equation of motion (see
Eq. 2 with F(ext)

l (t) = 0). Performing the transformation of this equation to
normal coordinates one finds, for each component 〈Q2

1k〉, 〈Q2
2k〉, and 〈Q2

3k〉,
an equation of the form of Eq. 15, from which the equilibrium solution for
〈Q2

k〉 = 〈Q2
1k〉 + 〈Q2

2k〉 + 〈Q2
3k〉, namely

〈Q2
k〉 =

3kBT
Kλk

(36)

follows [30, 31].
A further simplification of Eq. 35 for GGS follows by noting that the combi-

nation of Cartesian coordinates of the GGS beads involved in
〈〈M(0)M(t)〉〉orient, see Eq. 34, is directly related to the potential energy
Uelast({R}) of the GGS, see Eq. 1. Indeed, with the use of Eq. 10 one has [31]:

Uelast({R}) =
K
2

Nbond∑

j=1

Pj
2 =

K
2

Ntot∑

k=1

〈Q2
k〉

Nbond∑

j=1

(
C( j)

lk – C( j)
mk

)2
(37)

=
K
2

Ntot∑

k=1

λk〈Q2
k〉 ,

and therefore [31]

Nbond∑

j=1

(C( j)
lk – C( j)

mk)2 = λk . (38)

Inserting Eq. 38 into Eq. 35 finally leads to the following compact form for
〈〈M(0)M(t)〉〉orient [30–32]:

〈〈M(0)M(t)〉〉orient = µ2 3kBT
K

Ntot∑

i=1

exp(– t/τk) . (39)

It is now a straightforward matter to compute the dielectric susceptibility
∆ε∗(ω). From Eq. 39 the normalized autocorrelation function of the total
dipole moment C0(M; t) reads:

C0(M; t) =
1

Ntot

Ntot∑

k=1

exp
(

– t/τk
)

, (40)

where again τk = τ0/λk. Inserting Eq. 40 in Eq. 31 now leads to the dielec-
tric susceptibility ∆ε∗; expressing it in terms of its real and imaginary parts,
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∆ε∗ = ∆ε′ – i∆ε′′, we find [31, 32]:

∆ε′(ω) =
1

Ntot

Ntot∑

k=2

1
1 + (ωτk)2 (41)

and

∆ε′′(ω) =
1

Ntot

Ntot∑

k=2

ωτk

1 + (ωτk)2 . (42)

Here again the sums are taken over all finite relaxation times; the infinite time
τ1 related to λ1 = 0 is not included, because the term corresponding to λ1 con-
tributes a constant to C0(M; t) in Eq. 40 and, therefore, vanishes in Eq. 31 after
differentiation with respect to time.

The approach presented here was first developed for the dielectric re-
laxation of regular mesh-like polymer networks built from macromolecules
with longitudinal dipole moments [30], and was later applied to disordered
polymer networks [31, 32]. Its key assumption, namely the absence of any cor-
relations in the orientations of the dipole moments of the different GGS bonds
is obviously rather simplified. However, it leads, as shown above, to simple
analytical expressions for the dielectric susceptibility, a very important dy-
namical quantity in experimental studies of polymers; we can now analyze it
in great detail for particular GGS systems of interest. Another advantage of
this model arises from the fact that one has a straightforward correspondence
between the mechanical and the dielectric relaxation forms. From the expres-
sions for the storage and loss modulus, Eqs. 20 and 21, and from those for the
dielectric susceptibility ∆ε∗, Eqs. 41 and Eq. 42, one sees readily that [31]

∆ε′(ω) = 1 – [G′(2ω)] (43)

and that

∆ε′′(ω) = [G′′(2ω)] . (44)

One may furthermore note that the dielectric susceptibility is determined by
relaxation times which are twice larger than those appearing in the expres-
sions for the mechanical relaxation. Again, we would like to emphasize that
to calculate ∆ε∗(ω) (as well as G∗(ω)) we need only the eigenvalues λk (or the
relaxation times τk) of the GGS, but not the corresponding eigenfunctions.

3.3
Displacement of Monomers under External Forces

One more dynamical characteristic to be considered here in detail is the dis-
placement of GGS beads under external forces [7, 9, 33]. This dynamic quan-
tity is also of special interest because of recent experimental developments
that have demonstrated how to perform micromanipulations on polymers. In
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particular, individual DNA molecules were dragged by optical or magnetic
tweezers [34–36]; similar experiments were performed with magnetic beads
in actin networks [37].

Let us consider a situation in which a time-dependent external force
F(ext)

l (t) is applied to the GGS beads; see the Langevin equation of motion,
Eq. 2. Now, averaging this equation over the thermal noise components f l(t),
we have for 〈Rl(t)〉:

d〈Rl(t)〉
dt

+
1
τ0

Ntot∑

m=1

Alm〈Rm(t)〉 =
1
ζ

F(ext)
l (t) . (45)

Equation 45 has the following formal solution [7, 9, 33]:

〈Rl(t)〉 =
1
ζ

t∫

–∞
dτ

Ntot∑

m=1

(
exp

[
–

(t – τ)
τ0

A
])

lm
F(ext)

m (τ) , (46)

where A = (Alm) is the connectivity matrix of the GGS. As an example, we con-
sider here the special case of a constant external force that is switched on at
t = 0 and acts only on one particular bead, say n, along the y-direction, so that

F(ext)
m (t) = δmnF(ext)

0 θ(t) · ey . (47)

For this kind of external force, Eq. 46 simplifies to

〈Yn(t)〉 =
1
ζ

F(ext)
0

t∫

0

dτ

(
exp

[
–

(t – τ)
τ0

A
])

nn
. (48)

Note that 〈Yn(t)〉 still depends on the bead positions in the GGS; in other
words on the index n. As a consequence, even for an external force of such
a simple form we need both the eigenvalues and the eigenfunctions of the
connectivity matrix A of the GGS in order to obtain the average displace-
ment of the nth GGS bead. The need to determine the eigenfunctions may be
overcome by further averaging over all beads in the GGS [7, 9, 33]:

〈〈Y(t)〉〉 =
1

Ntot

Ntot∑

n=1

〈Yn(t)〉 (49)

=
F(ext)

0

Ntot ζ

t∫

0

dτTr
(

exp
[

–
(t – τ)

τ0
A

])

=
F(ext)

0

Ntot ζ

t∫

0

dτ

Ntot∑

k=1

exp
[

–
(t – τ)

τ0
λk

]
,
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where Tr(X) denotes the trace of the matrix X. In Eq. 49 we used the fact
that the trace is invariant under normal mode transformations, such as Eq. 9,
which represents an orthogonal transformation which rotates the Cartesian
axes.

To present Eq. 49 in a more meaningful form, we recall that for a GGS,
which is a connected object, only one eigenvalue vanishes, λ1 = 0. Separating
this eigenvalue from the non-vanishing ones and performing the integration
in Eq. 49, we finally obtain the following for 〈〈Y(t)〉〉 [7, 9, 33]:

〈〈Y(t)〉〉 =
F(ext)

0

Ntotζ
t +

F(ext)
0

Ntotζ
τ0

Ntot∑

k=2

1 – exp(– tλk/τ0)
λk

(50)

=
F(ext)

0

Ntot ζ
t +

F(ext)
0

Ntot ζ

Ntot∑

k=2

τk
[
1 – exp(– t/τk)

]
.

The first term in Eq. 50 mirrors the displacement (drift) of the GGS as a whole
under the constant external force; it involves the friction which acts on the
whole GGS, ζGGS = Ntotζ . The second term displays the intra-GGS relaxation
and is governed by the set of relaxation times (eigenvalues) of the GGS. As we
will see in the following, the bead displacements given by Eq. 50 are a very
useful tool in probing the dynamical features of polymer systems with com-
plex topologies.

4
Historical Retrospective: The Linear Rouse Chain

4.1
50 Years of the Rouse Model

In 1948, two Soviet physicists, Kargin and Slonimskii, published a paper in
which they introduced a “bead and spring” model for linear polymers [38].
Their model did not include Brownian fluctuating forces and, in a certain
sense, was a precursor to Bueche’s publication [39], which appeared six years
later. Since the Kargin-Slonimskii model was only published in Russian, it did
not make a strong impact internationally. In 1953 Rouse published his paper
“A theory of linear viscoelastic properties of dilute solutions of coiling poly-
mers” [1], in which he explicitly introduced stochastic Brownian forces into
the bead and spring linear chain model. This fundamental model of polymer
chain dynamics became known in the literature as the Rouse model; the paper
by Rouse is one of the most cited publications in polymer physics (the search
engine of the “Web of Science” finds over 2200 citations for the period from
1986 to 2003). In this section we succinctly recall its main features.
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Let us consider a GGS that has a linear topology and that consists of
Ntot ≡ N beads connected by elastic springs, see Fig. 1A. The Langevin equa-
tion of motion, Eq. 2, can be rewritten for the inner chain beads, 1 < j < N, in
the form [1, 2, 40, 41]:

ζ
d
dt

Rj(t) + K[2Rj(t) – Rj+1(t) – Rj–1(t)] = f j(t) , (51)

where Rj(t) is the position vector of the jth bead. The equations of motion for
the end beads ( j = 1 and j = N) are:

ζ
d
dt

R1(t) + K[R1(t) – R2(t)] = f 1(t) (52)

and

ζ
d
dt

RN(t) + K[RN(t) – RN–1] = f N(t) . (53)

The determination of the eigenvalues of the A matrix corresponding to
Eqs. 51, 52, and 53 is best performed by a transformation from Cartesian
coordinates to normal coordinates, Eq. 9. Here the transformation can be for-
mulated as:

Rj(t) =
N∑

k=1

[
A sin( jψk) + B cos( jψk)

]
Qk(t) , (54)

where ψk denotes the phase shift along the Rouse chain. Inserting Eq. 54 into
Eq. 51 leads to the following expression for the non-vanishing eigenvalues in
terms of the ψk [1, 2]:

λk = 2(1 – cos ψk) = 4 sin2
(

ψk

2

)
. (55)

The ψk are now fixed by Eqs. 52 and 53, which play the role of boundary con-
ditions. It turns out that one finds, as before, a single vanishing eigenvalue,
λ1 = 0. The remaining (N – 1) non-vanishing eigenvalues {λ2, ..., λN} are fixed
by having

ψk =
π

N
(k – 1) , k = 2, ..., N (56)

as solutions, to be inserted in Eq. 55. The corresponding relaxation times τk
are given by Eq. 12, while τ0 = ζ/K is the characteristic relaxation time of the
Rouse chain. It is a simple matter now to determine the maximal relaxation
time τchain of the Rouse chain of N beads (τchain is often referred to as the
Rouse time):

τchain ≡ τ0

λ2
� 1

π2 N2τ0 . (57)

Hence τchain grows as the square mass of the polymer chain, τchain ∼ M2.
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Remarkably, the boundary conditions, Eqs. 52 and 53, allow to establish
the exact form of the normal mode transformation, Eq. 54, for the Rouse
chain [40]:

Rj(t) =
1√
N

Q1(t) +

√
2
N

N∑

k=2

[
cos

(
j –

1
2

)
ψk

]
Qk(t) . (58)

Here the numerical constants 1/
√

N and
√

2/N were determined from the
transformation of the potential energy and the dissipative function of the
Rouse chain, see Eqs. 10 and 11. The normal coordinate Q1(t) corresponds
to the vanishing eigenvalue λ1 = 0 and is related to the position vector of the
center of mass RCOM:

RCOM(t) ≡ 1
N

N∑

j=1

Rj(t) =
1√
N

Q1(t) . (59)

Using Eq. 59 and the equation of motion for Q1(t), it is a simple matter to
compute the mean-square displacement of the center of mass of the Rouse
chain at time t, averaged over the fluctuating forces:

〈(RCOM(t) – RCOM(0))2〉 =
6kBT
Nζ

t . (60)

Therefore, the diffusion coefficient Dchain of the Rouse chain as a whole
equals:

Dchain = lim
t→∞

1
6t

〈(RCOM(t) – RCOM(0))2〉 =
kBT
Nζ

, (61)

in other words, in the framework of the Rouse model, Dchain is inversely pro-
portional to the mass of the chain (Dchain ∼ M–1), a result which simply states
that the chain feels all friction forces on its monomers additively. It is also
instructive to study the relaxation of the end-to-end vector r(t) = RN – R1 of
the Rouse chain. Its autocorrelation function can be reduced to the following
compact form [2, 40, 41]:

〈r(t)r(0)〉 =
6
N

kBT
K

N∑

k=2,4,6,...
cot2

(
ψk

2

)
exp(– t/τk) . (62)

Based on this expression, one can estimate the decay of 〈r(t)r(0)〉 in the inter-
mediate time domain (τ0 � t � τchain):

〈r(t)r(0)〉 � 12
π2

kBT
K

N exp

(
–

√
t

τchain

)
, (63)

which obeys a square-root time dependence. For t > τchain the autocorrela-
tion function ends up with an exponential decay which is characterized by the
Rouse time τchain.
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Now we turn to the dynamic viscoelastic properties of Rouse chains in di-
lute solutions. The storage and loss moduli of the Rouse chain are given by
Eqs. 20 and 21, where the finite relaxation times are defined through Eqs. 55
and 56. Similar to all free-floating GGS, at very low frequencies, ω � 1/τchain,
one has G′(ω) ∼ ω2 and G′′(ω) ∼ ω. It is more interesting, however, to con-
sider the behavior of the Rouse chain in the intermediate frequency domain,
1/τchain � ω � τ0, where one has [1–3]:

[G′(ω)] = [G′′(ω)] � 1

2
√

2

√
ωτ0 . (64)

This square-root dependence on ω is a fundamental feature of linear chains
in the Rouse model. The shear modulus at intermediate frequencies is a sig-
nature of the internal, “intra-chain” dynamics, which is determined by the
topology of the GGS. As stressed before, the viscoelastic relaxation forms
can be expressed through the relaxation spectrum H(τ), see Eq. 27. Here one
finds [3]:

H(τ) � 1

2
√

2

1
π

√
τ0

τ
, where τ0 < τ < τchain . (65)

One should note the appearance of a square-root behavior (now as a func-
tion of τ) in the H(τ) of Rouse chains. Given the close relation between H(τ)
and G(t), see Eq. 27, it can be shown that in the intermediate time domain,
τ0 < t < τchain, the relaxation modulus G(t) depends on time as:

[G(t)] � 1

π
√

2

√
τ0

t
. (66)

In other words, it also obeys a square-root dependence on time.
It has to be emphasized that the knowledge of the full form of the normal

mode transformation, see Eq. 58, allows one to compute dynamic character-
istics which are not averaged over the beads and which depend, therefore, on
the position of the particular bead along the Rouse chain. To conclude this
section, we will discuss two such examples.

First, let us focus on the mean-square displacement 〈∆R2
j (t)〉 = 〈(Rj(t) –

Rj(0))2〉 of the jth bead. Using Eq. 58, one obtains [41]:

〈∆R2
j (t)〉 =

6kBT
Nζ

t +
12kBT

NK

N∑

k=2

cos2
[(

j –
1
2

)
ψk

]
1 – exp(– t/τk)

λk
. (67)

At t  τchain, the behavior of the 〈∆R2
j (t)〉 is governed by the first term in

Eq. 67, which is simply the mean square displacement of the center of mass
of the Rouse chain, see Eq. 60. Thus, we have the usual diffusive behavior of
a free Brownian particle, whose root mean square behavior follows the ordi-
nary law ∼ t1/2. At intermediate times, τ0 � t � τchain, one has the following
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behavior for 〈∆R2
j (t)〉:

〈∆R2
j (t)〉 � 12kBT

πK

√
t
τ0

. (68)

Thus, in the intermediate time domain the root mean square displacement
of a bead increases more slowly with time (∼ t1/4) than ordinary diffusion.
The physical reason for this is clear: The fact that a given bead is connected
to other beads in the chain effectively slows down its diffusive motion [41].
To complete the picture, we also consider the displacement of a bead under
the influence of an external force, see Eq. 50; in the same domain of interme-
diate times (τ0 � t � τchain) one finds:

〈〈Y(t)〉〉 � 2F(ext)
0

πK

√
t
τ0

. (69)

Not surprisingly, the temporal behavior in Eqs. 68 and 69 is the same
(see also Eqs. 67 and 50), a consequence of the fluctuation-dissipation theo-
rem, which relates the diffusion in the absence of an external field to the drift
in such a field.

Finally, we consider the relaxation of the end-to-end subchain vector be-
tween neighboring beads, uj = (Rj+1 – Rj), where j = 1, ..., (N – 1). The auto-
correlation function of the uj can also be computed using the normal mode
transformation, Eq. 58. One finds [40]:

〈uj(t)uj(0)〉 =
6kBT
NK

N∑

k=2

sin2 (
jψk

)
exp(– t/τk) . (70)

Interestingly, the expression for the autocorrelation function 〈uj(t)uj(0)〉 is
reminiscent of that of the relaxation modulus G(t), Eq. 26. Their behaviors at
τ0 � t � τchain do indeed coincide (compare with Eq. 66):

〈uj(t)uj(0)〉 � 3kBT
πK

√
τ0

t
. (71)

4.2
Successes and Limitations of the Rouse Approach:
Comparison with the Zimm and the Reptation Pictures

The Rouse model was initially designed to treat the dynamics of polymers
in very dilute solutions [1]. Ironically, however, it turned out that dilute so-
lutions are not appropriate systems for it. Indeed, in the Rouse model the
maximal relaxation time, τchain, and the diffusion coefficient, Dchain, scale
with the molecular weight, M, as M2 and M–1, respectively (see Eqs. 57
and 61). Furthermore, it is a straightforward matter to demonstrate that for
the Rouse model at ω = 0 the zero shear viscosity [η′(0)] is proportional to M,
see Eq. 22. All these theoretical findings disagree with the experimental data
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on dilute polymer solutions, where in θ-solvents one finds that τchain ∼ M3/2,
Dchain ∼ M–1/2, and [η′(0)] ∼ M1/2 [3]. The reason for this disagreement is
that in dilute solutions the hydrodynamic interactions play a crucial role.
These interactions are fully ignored in the Rouse model: the solvent is mod-
eled as a continuous immobile medium, which is felt by the beads only
through their viscous friction. However, in dilute polymer solutions the mo-
tion of a particular bead affects all the other beads through the perturbation
of the solvent; in other words, the solvent mediates effective interactions be-
tween the beads. As was first demonstrated by Zimm [5], taking into account
the hydrodynamic interactions significantly improves the agreement between
experiment and model.

In the Zimm model (see Fig. 2A) the hydrodynamic interactions are in-
cluded by employing the Oseen tensor Hlm; the tensor describes how the mth
bead affects the motion of the lth bead. This leads to equations of motion
that are not linear anymore and that require numerical methods for their
solution. In order to simplify the picture, the Oseen tensor is often used
in its preaveraged form, in which one replaces the operator by its equilib-
rium average value [5]. For chains in θ-solvents, this leads for the normal
modes to equations similar to the Rouse ones, the only difference resid-
ing in the values of the relaxation times. An important change in behavior
concerns the maximum relaxation time τchain, which in the Zimm model de-
pends on N as N3/2 and implies a speed-up in relaxation compared to the
Rouse model. Accordingly, the zero shear viscosity decreases in the Zimm
model and scales as N1/2. Also, in the Zimm model the diffusion coefficient

Fig. 2 (A) Schematic representation of the Zimm model, which takes into account hy-
drodynamic interactions. The beads affect (through the solvent) the motion of a bead
which is distant from them along the chain (not connected directly to them by means
of springs). (B) Schematic representation of the reptation model. A given, long polymer
chain moves in the tube formed by other chains
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of chains, Dchain ∼ N–1/2, is larger than in the Rouse model. Moreover, the
Zimm molecular mass dependencies of the maximal relaxation time, of the
diffusion coefficient, and of the zero shear viscosity are all consistent with
the experimental findings [3]. The Zimm model also agrees with the experi-
ment with respect to the frequency dependence of the storage and loss moduli
of dilute polymer solutions under θ-conditions: both G′(ω) and G′′(ω) show
a ω2/3-behavior, in contrast to the Rouse situation, where the behavior turns
out to be proportional to ω1/2, see Eq. 64 [2, 3].

As the concentration of the polymer solution increases, the experiments
show a systematic change from Zimm-like to Rouse-like behavior (see for ex-
ample the monograph of Ferry [3] and references therein). The reason for this
finding is the screening of the hydrodynamic interactions: in the semidilute
regime different polymer chains start to overlap and the hydrodynamic inter-
actions between fragments of the same chain are screened from each other by
the presence of other chains. The dynamic crossover from the Zimm to the
Rouse behavior was the subject of a number of theoretical studies [42–44].
The dynamics of semidilute solutions is well-represented in terms of the so-
called “blob” model. A blob is a group of monomers of a given chain, whose
size is of the order of the hydrodynamic screening length ξH. At scales smaller
than ξH, monomers of a particular chain do not feel the presence of the
other chains and, therefore, the hydrodynamic interactions are not screened,
leading to a Zimm-like behavior. At larger scales, the intra-blob (Zimm) re-
laxation ends, the blobs can be envisaged as being Stokes spheres, and the
mutual interactions between them draw their mobility down, which gives rise
to a Rouse-like behavior [44]. Furthermore, the results of recent computer
simulations [45] show that the time scales matter as well as the length scales:
at times shorter than the blob relaxation time there is no screening of the
hydrodynamic interactions and the polymer motion is essentially Zimm-like
on all length scales [45]. This also explains the experimental observation of
an incomplete screening on length scales above the hydrodynamic screening
length ξH [46].

With a further increase in concentration one reaches the regime of con-
centrated solutions and melts. Here it is crucial to distinguish two differ-
ent situations, which involve either short (unentangled) or long (entangled)
chains. The border line between these situations is given by the so-called en-
tanglement length Ne [2, 3], which is different for different polymers (for in-
stance, the molecular weight of a polystyrene macromolecule at entanglement
length is about 20 000). For polymer melts of short chains (N < Ne) the Rouse
model provides an excellent description of the long-time dynamical behavior,
a fact well-documented both experimentally [3, 47] and by computer simu-
lations [48–53]; some deviations, however, have also been reported [54]. In
melts of short chains the hydrodynamic interactions are absent (there is no
solvent in the melt) and entanglement effects do not play a noticeable role.
The dynamics of a particular chain in the melt can be viewed as being that
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of a Rouse chain embedded in an effective viscous medium, created by the
other chains of the melt [2, 3]. It should be noted that it is still an open ques-
tion as to why such a complicated system as a short-chain polymer melt can
be described well by means of the simple Rouse model.

In melts of long chains (longer than the entanglement length Ne) the topo-
logical constraints lead to a considerable slowing down of the motion of the
monomers. The individual chains do not follow the Rouse behavior anymore.
The dynamics of such entangled melts can be described in terms of the rep-
tation (tube) model, first proposed by de Gennes [4]. Here each chain moves
in an effective tube formed by the other chains, see Fig. 2B. At short times the
chain does not feel the tube and one finds an unconstrained Rouse-like behav-
ior. This holds up to a time τe, which is just the maximal relaxation time of
a Rouse chain of length Ne (τe ∼ N2

e ). At longer times the polymer chain can
only move along the tube; evidently, in the course of time, the original tube is
slowly destroyed by the forward and backward motions of the chain [2, 4, 55].
The longest relaxation time is the time of disengagement of the chain from
the original tube (or, equivalently, the average lifetime of the tube); it is found
to scale as N3 [2, 4, 41]. The diffusion of the chain in the entangled melt is
also slowed down when compared to the Rouse behavior; in the tube model
the diffusion coefficient turns out to be proportional to N–2 [2, 4]. An exten-
sion of the tube model to concentrated solutions and melts of polydisperse
entangled polymers was also carried out [56]. We note that the crossover from
the Rouse behavior to reptation has been confirmed through numerous com-
puter simulations [48, 57–59]. Furthermore, reptation successfully explains
the appearance of a plateau region in the relaxation modulus, as observed in
uncrosslinked polymer melts of high molecular weight [3].

All in all, the Rouse model provides a reasonable description of polymer
dynamics when the hydrodynamic interactions, excluded volume effects and
entanglement effects can be neglected; a classical example of its applicabil-
ity is short-chain polymer melts. Since the Rouse model is exactly solvable
for polymer chains, it represents a basic reference frame for comparison with
more involved models of polymer dynamics. In particular, the decoupling of
the dynamics of the Rouse chain into a set of independently relaxing normal
modes is fundamental and plays an important role in other cases, such as
more complex objects of study, or in other models, such as the Zimm model.

5
Regular Mesh-Like Polymer Networks

After the above historical retrospective devoted to linear Rouse chains, we
follow the extension of this approach to polymer systems that have more com-
plex topologies. We focus first on the dynamics of networks cross-linked from
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Rouse chains. The fundamental feature here is the appearance of coopera-
tive interchain motions due to cross-linking. First approaches to evaluating
the dynamical properties of such networks started from the intrachain relax-
ation, and accounted for the connectivity between chains only in simplified,
effective ways. For instance, the dynamics of Rouse chains that have fixed
(constant) end-to-end distances were studied [60]. Alternatively, Mooney
considered Rouse chains with fixed (immobile) ends as a model for a poly-
mer network [3, 61]. In particular, he found that the relaxation modulus of
such a chain coincides with that of a Rouse chain with free ends, except for
a constant contribution, which can be considered as being the nonvanishing,
equilibrium modulus of the network. However, the idea of the GGS formalism
is to take the connectivity exactly into account, see Eqs. 1 and 2. In order to
gradually increase the complexity of the networks, one can start by first con-
sidering chains cross-linked into regular spatial structures. This is the subject
of the present section.

5.1
Regular Network Models for Cooperative Interchain Relaxation

5.1.1
3-D Model Networks

The classical Rouse treatment was originally developed for linear chains. If
one views the linear polymer chain as a one-dimensional regular string of
beads connected by springs, then a straightforward and obvious extension is
to build from beads and springs regular lattices of higher dimensions. Such
an approach was suggested by Gotlib [62] for studying the low-frequency
modes of polymer networks. Since real cross-linked polymers are normally
3-D structures, cubic networks were first to attract the attentions of re-
searchers [24, 30, 62, 63]. Cubic networks were employed to study interchain
friction effects [62, 63], dielectric relaxation [30], and various aspects of me-
chanical viscoelastic relaxation [24, 64, 65]. One should, of course, note at all
stages of our discussion that only the topological structure of the networks
is regular. In their spatial appearance in solution, the networks are quite dis-
ordered (stretched, folded, and twisted), as befits their very mobile beads.
All of the GGS displayed in this review are drawn such as to render their
topologies clear; hence the drawings are, in fact, very atypical of the general
locations of the beads in space.

In the following we sketch some simple ways for determining the dynam-
ics of simple cubic networks: here we prefer not to use the general approach,
exemplified by Eqs. 2 and 9, which involves matrix diagonalizations [64, 65],
because for cubic networks the analysis can be done in a simple way by means
of normal mode (Fourier) transformations. We remark that simple cubic net-
works are also a coarse-grained model for more complex systems, like those
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built from Rouse chains connected regularly into a cubic framework. We will
study such systems in detail in Sect. 5.2.1. Coarse-graining implies replacing
each Rouse chain by a spring; the price to be paid for this is that the intrachain
eigenfrequencies are lost.

We hence start with a cubic network formed by beads which have an iden-
tical friction constant, ζ , and which are connected to each other by means
of elastic Hookean springs with elasticity constant K, see Fig. 3. The network
is embedded into an effective viscous medium and is a regular structure in
the sense of connectivity only. Every site of the cubic network is denoted by
a three-dimensional index Ω = (α, β, γ ). The Langevin equation of motion,
Eq. 2, can be rewritten here as:

ζ
d
dt

R(α, β, γ ; t) + K[6R(α, β, γ ; t) – R(α + 1, β, γ ; t) (72)

– R(α – 1, β, γ ; t) – R(α, β + 1, γ ; t) – R(α, β – 1, γ ; t)

– R(α, β, γ + 1; t) – R(α, β, γ – 1; t)]

= f (α, β, γ ; t) .

Here R(α, β, γ ; t) denotes the position vector of the network junction
Ω = (α, β, γ ) and f (α, β, γ ; t) is the corresponding stochastic force (thermal
noise), again assumed to be Gaussian with zero mean value.

In spite of the fact that it is easy to get a solution for the cubic poly-
mer network with free boundaries (in a quite analogous way as for the
linear Rouse chain with free ends), we will consider here a network with
periodic boundary conditions (PBC). In doing so, we use the same for-
malism as later, when we consider more complex systems, for which
analytical solutions are known only under PBC. In our case such PBC
mean that R(1, β, γ ; t) = R(N + 1, β, γ ; t), R(α, 1, γ ; t) = R(α, N + 1, γ ; t), and
R(α, β, 1; t) = R(α, β, N + 1; t), where N is a number of beads along a given di-

Fig. 3 One elementary cell of a cubic network built from beads (each having friction
constant ζ) which are connected by elastic springs each with elasticity constant K
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rection of the network (the total number of junctions in our cubic networks
being equal to N3).

The Langevin equation of motion, Eq. 72, can be easily solved by means
of a transformation from the Cartesian coordinates R to the normal coordi-
nates Q, Eq. 9. The transformation reads:

R(α, β, γ ; t) =
1

N3/2

∑

k

exp[i(αk1 + βk2 + γk3)] Q(k1, k2, k3; t) . (73)

Here the triple k = (k1, k2, k3) is not a reciprocal vector as in solid state
physics, because the network does not possess translational symmetry. We
will view k rather as describing a phase shift between the different Ω.

Inserting Eq. 73 into the Langevin equations of motions, Eq. 72, immedi-
ately leads to the eigenvalues of the simple cubic network [24, 30, 62, 63]:

λ(k) = 2(3 – cos k1 – cos k2 – cos k3) . (74)

The periodic boundary conditions allow us, in turn, to restrict k to the values:

k1 =
2πm1

N
, k2 =

2πm2

N
, and k3 =

2πm3

N
, (75)

where the integers m1, m2, and m3 range from 0 to (N – 1). Equations 74
and 75 fully determine the eigenvalues of the cubic network. Each normal
mode Q(k; t) then decays exponentially with the relaxation time (see also
Eq. 12):

τ(k) =
τ0

λ(k)
, (76)

where λ(k) are as in Eq. 74 and τ0 is its characteristic relaxation time,
τ0 = ζ/K. Remarkably, since the normal modes (the eigenfunctions), Eq. 73,
are also known, it is possible to obtain analytical expressions not only for
the macroscopic dynamic characteristics (dynamic modulus and viscosity),
but also for the local quantities (not averaged over the Ω), such as the au-
tocorrelation function of the end-to-end chain vector between neighboring
cross-links [66]. Note that Eq. 74 was also obtained in [64, 65], by means of
rather complicated operations involving connectivity matrices.

Now we compare the viscoelastic mechanical properties of a topological
cubic structure to those of a linear chain. Since for the former the relaxation
times are known, see Eqs. 76, 74 and 75, it is now a straightforward matter
to calculate the dynamic modulus and to estimate its behavior in different
frequency domains analytically. It turns out that the storage modulus G′(ω)
of cubic networks obeys a ω3/2 form in the region of intermediate frequen-
cies; this is very different from the behavior of a Rouse chain, where in the
intermediate range G′(ω) has a ω1/2 form, see Fig. 4.

The underlying reason for these findings is the fact that for a cubic net-
work the relaxation spectrum H(τ) decays as τ–3/2, and thus more quickly
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Fig. 4 Reduced storage modulus [G′(ω)] plotted on double logarithmic scales versus the
reduced frequency ωτ0. Shown are results for a linear Rouse chain of 250 beads (dashed
line), for a topologically-square network (250×250), solid line with stars, and for a topo-
logically cubic network (150×150×150), solid line. For simplicity, the characteristic time
τ0 = ζ/K was chosen to be the same for all three systems

than for the Rouse chain, where H(τ) obeys a τ–1/2 form. This H(τ)-behavior
also leads to a faster decay of the relaxation modulus, which now follows
G(t) ∼ t–3/2 instead of G(t) ∼ t–1/2 for the Rouse chain. Physically, the behav-
ior of the cubic network can be understood based on the increased growth of
the number of nearest neighbors, next-nearest neighbors, next-next-nearest
neighbors, and so on. This picture is very akin to the definition of the frac-
tal dimension; in fact, in Sect. 6 we will see that similar power-law forms for
G′(ω), G′′(ω), and G(t) also hold for fractal networks, but that the exponents
are related to the spectral dimension of the fractal.

It is perhaps also worth noting that the τ–3/2 behavior of the relaxation
spectrum H(τ) of a cubic network is due to its three-dimensional connec-
tivity character but not to the details of the particular network structure. In
the fractal framework the spectral dimension of all these networks is 3, and
the relaxation behavior is universal. In this regard the work of Denneman
et al [64] is very instructive. The authors considered Hookean springs cross-
linked into the three Bravais cubic lattices, namely simple cubic (sc) (this
corresponds to the network considered above), body-centered cubic (bcc),
and face-centered cubic (fcc). They succeeded in finding analytical expres-
sions for the eigenvalues of the sc lattice (they coincide with Eq. 74) but
not for the bcc and fcc lattices, which were treated numerically. It turns out
(in agreement with the statement above), that the dynamic modulus for all
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three cubic lattices has the same frequency behavior, the only difference be-
ing a slightly different value of the characteristic (minimal) relaxation time.
In [64] it is found that τsc > τbcc > τfcc and that this difference results in a shift
of the corresponding modulus curves along the frequency axis.

5.1.2
2-D Model Networks

In order to illustrate the fundamental role of the dimensionality in the
dynamical behavior of networks, it is instructive to consider topologically
two-dimensional networks, see Fig. 5 for an example. While as a rule many
cross-linked polymers display a three-dimensional character, say, based on
their H(τ)-behavior, two-dimensional structures may be realized in polymer
films, by deposition on surfaces, and so on. Furthermore, two-dimensional
networks are intermediate between the two cases (1-D and 3-D) already dis-
cussed; two-dimensional systems have dynamical features which interpolate
between the previous findings.

A comparative study of the equilibrium properties of coarse-grained topo-
logical cubic and square networks was performed by Ronca and Allegra, who
employed electrical analogs for this purpose [67]. In particular, they found
that the mean-square radius of gyration of a two-dimensional network in-
creases logarithmically with the total number of network junctions, while it is
of the same order of magnitude as that of a single bond in the case of a three-
dimensional network. A more general result, based on fractal systems and
ideas, and which also includes this finding, is provided in [6].

Fig. 5 Sketch of a square network built from beads each with friction constant ζ , which
are connected by elastic springs each with elasticity constant K
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The dynamics of a topologically square network can be treated along the
lines used for the cubic network above. The Langevin equations of motion for
a square network are similar to those of the cubic network:

ζ
d
dt

R(α, β; t) + K[4R(α, β; t) – R(α + 1, β; t) (77)

– R(α – 1, β; t) – R(α, β + 1; t)

– R(α, β – 1; t)]

= f (α, β; t) ,

where R(α, β; t) denotes the position vector of a bead and where we set
Ω = (α, β). Applying the two-dimensional analog (k3 = 0) of the normal mode
transformation, Eq. 73, one obtains the following set of eigenvalues for the
square network [68, 69]:

λ(k) = 2(2 – cos k1 – cos k2) , (78)

where the phase shift k = (k1, k2) between the Ω is given by Eq. 75 with k3 = 0.
The same analytical expression for the eigenvalues (relaxation times) was pre-
viously found by Denneman et al [65].

Analysis of the dynamical viscoelastic quantities shows that the re-
laxation spectrum H(τ) of the two-dimensional network goes as H(τ) ∼
1/τ [65, 68–70]. Hence 2-D networks do indeed show dynamical behavior in-
termediate between that of linear chains and that of 3-D networks. Moreover,
in a fractal picture, square networks may be viewed as being fractals and as
having a spectral dimension of 2. Now H(τ) ∼ 1/τ leads to an ω1-behavior for
the storage modulus G′(ω), see Fig. 4, and to G(t) ∼ 1/t.

At this stage one can already note the general scaling behavior of H(τ) and
its dependence on the dimensionality d of the networks. One can summarize
our discussion by noting that for all d considered H(τ) ∼ τ–d/2 and thus also
G′(ω) ∼ ωd/2 and G(t) ∼ t–d/2. In Sect. 6 we will see that these expressions
stay unchanged when replacing d by d̃, the spectral dimension. Furthermore,
the above-mentioned differences in the equilibrium properties of two- and
three-dimensional networks are also manifest in the local dynamic prop-
erties, stressing the universal role of d. We mention that the mean-square
displacement of a bead of a 2-D network under stochastic forces grows with
the time t as log(t/τ), while the same dynamical quantity in a 3-D network
reaches a finite, limiting value at long times [68, 69]. This concurs with the
findings of Ronca and Allegra [67], is in line with the previously mentioned
findings on the mean-square radius of gyration (fluctuation-dissipation theo-
rem), and is a special case of the fractal picture [6].
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5.2
Topologically-Regular Networks Built from Rouse Chains:
Exactly Solvable Models

5.2.1
Topologically-Cubic Networks

After the simple topological structures (cubic and square) just discussed, we
turn now to the analysis of regular networks built from Rouse chains. This al-
lows us to study an important problem in polymer network dynamics, namely
the way in which the cross-linking of Rouse chains (or, as we will discuss in
later sections, of more complex units) into larger structures is reflected in the
dynamics of the resulting networks.

For simplicity we consider end-linked polymer networks and we disre-
gard, as is usual with GGS, entanglement effects. A simple model of a three-
dimensional structure, which explicitly takes into account the connectivity
between polymer chains, is a regular cubic network cross-linked from Rouse
chains. Remarkably, it turns out that under certain conditions the dynamical
problem for such a network can be fully solved analytically [25, 66, 71]. This
solution provides insight into the network’s dynamics and is, therefore, worth
detailed consideration.

We start with a regular cubic network which has cross-link points (net-
work junctions) as vertices; these are connected by means of identical Rouse
chains, see Fig. 6. All Rouse chains in the network consist of the same num-
ber n of beads (having a friction constant ζ); they are connected among

Fig. 6 An elementary cell of a topologically-regular cubic network cross-linked from
Rouse chains. One of the network chains between two cross-links (junctions) is shown
in detail. Note that the dynamic problem of such a network can be exactly solved only
under the condition that the friction constant of each network junction, ζjun, is three
times larger than that of a chain bead, see text for details
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themselves and via the corresponding cross-links by (n + 1) identical elastic
springs each with elasticity constant K. Each cell of the cubic network under
study contains one junction (cross-link) and three Rouse chains attached to it;
it is denoted by the three-dimensional index Ω = (α, β, γ ). The network is as-
sumed to consist of N3 junctions (cross-links), so there are N junctions along
each of the three network directions and the α, β, and γ indices range from
1 to N. The whole network is embedded into a continuous viscous medium.
Then one has the following Langevin equations of motion for the beads of the
chains:

ζ
d
dt

Rp(Ω; j; t) + K[2Rp(Ω; j; t) – Rp(Ω; j + 1; t) – Rp(Ω; j – 1; t)] (79)

= f p(Ω; j; t)

and for the network junctions (cross-linking points of the chains):

ζjun
d
dt

R0(α, β, γ ; t) + K[6R0(α, β, γ ; t) – R1(α, β, γ ; 1; t) (80)

– R1(α – 1, β, γ ; n; t) – R2(α, β, γ ; 1; t)

– R2(α, β – 1, γ ; n; t) – R3(α, β, γ ; 1; t)

– R3(α, β, γ – 1; n; t)]

= f 0(α, β, γ ; t) .

Here Rp(Ω; j; t) denotes the position vector of the jth bead of the pth
Rouse chain in the network cell Ω = (α, β, γ ) (we recall that j = 1, ..., n and
p = 1, ..., 3), R0(Ω; t) is the corresponding position vector of the network
junction Ω, and f p(Ω; j; t) and f 0(Ω; t) are stochastic forces acting on the
chain beads and on the network junctions. Note that the chain beads and the
network junctions (cross-links) may have different friction constants, ζ and
ζjun, respectively. For simplicity, we apply periodic boundary conditions and
choose, because of later convenience, to express them through the coordi-
nates of the chain beads:

R1(0, β, γ ; n; t) = R1(N, β, γ ; n; t) , (81)

R2(α, 0, γ ; n; t) = R2(α, N, γ ; n; t) , (82)

and

R3(α, β, 0; n; t) = R3(α, β, N; n; t) . (83)

To solve the Langevin equations of motion, one can use the following
transformations from Cartesian coordinates R to normal coordinates Q:

Rp(Ω; j; t) =
∑

k,ψ

exp(iΩ ·k)(Ap sin jψ + Bp cos jψ)Q(k; ψ; t) (84)
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and

R0(Ω; t) =
∑

k,ψ

exp(iΩ ·k)B0Q(k; ψ; t) . (85)

Here the triple k = (k1, k2, k3) is related to the “global” phase shift between
different network cells and Ω ·k is the scalar product. In contrast, the intra-
chain quantity ψ corresponds to “local” phase shifts between neighboring
beads along the chains. As usual, an exponential decay of every normal mode
is characterized by the relaxation time τ(ψ) connected with the eigenvalues
λ(ψ) of the corresponding connectivity matrix of the network through Eq. 12,
with τ0 = ζ/K. Inserting the normal mode transformation, Eq. 84, into the
Langevin equations of motion for the beads of the chains, Eq. 79, leads to the
following set of eigenvalues λ(ψ):

λ(ψ) = 2(1 – cos ψ) . (86)

Formally, the expression for the eigenvalues has the same form as that for
the linear Rouse chain. Now, however, the intrachain phase shift ψ has to be
coupled to the triple k = (k1, k2, k3). The latter can be easily determined by in-
serting the equations of motion for non-junction chain beads, Eq. 79, into the
periodic boundary conditions, Eqs. 81 to 83. It brings us again to Eq. 75 for
k1, k2, and k3.

In order to obtain the intrachain phase shift ψ as well as the transform-
ation from the Cartesian coordinates to the normal coordinates, seven con-
stants, A1, A2, A3, B0, B1, B2, and B3, have to be determined, see Eqs. 84 and
85. For these purposes one can use the Langevin equations of motion for the
network junctions (cross-links), Eq. 80. Formally we also add the following
six conditions at the junction points:

R0(α, β, γ ; t) = R1(α – 1, β, γ ; n + 1; t) , (87)

R0(α, β, γ ; t) = R2(α, β – 1, γ ; n + 1; t) , (88)

R0(α, β, γ ; t) = R3(α, β, γ – 1; n + 1; t) , (89)

R0(α, β, γ ; t) = R1(α, β, γ ; 0; t) , (90)

R0(α, β, γ ; t) = R2(α, β, γ ; 0; t) , (91)

R0(α, β, γ ; t) = R3(α, β, γ ; 0; t) . (92)

The physical meaning of Eqs. 87 to 92 is that we envisage the chains to be con-
nected in such a way that three chain beads create a junction point. Equations
87 to 92 express the conditions that the coordinates of the beads 0 (or, equiv-
alently, (n + 1)) lie exactly at the positions of the junctions. Logically then,
the friction constant of a network junction is three times larger than that of
a network chain bead:

ζjun = 3 ζ . (93)
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It turns out that under these conditions the modes of the network system
can be determined analytically. In this case the Langevin equations for the
network junctions, Eq. 80, may be represented as a superposition of three
equations of motion for chain beads, Eq. 79. Considering Eq. 80 and the
boundary conditions for the cross-links points, Eqs. 87 to 92, jointly, leads to
the following sets of allowed values for the intrachain phase shift ψ (which, in
turn, fixes the eigenvalues through Eq. 86) [25, 66, 71]:

cos
[
(n + 1)ψ1

]
=

1
3

(cos k1 + cos k2 + cos k3) , (94)

sin
[
(n + 1)ψ2

]
= 0 , (95)

and

sin
[
(n + 1)ψ3

]
= 0 . (96)

Or, alternatively, one has:

ψ1 =
2π

n + 1
l1 ± 1

n + 1
arccos

[
1
3

(cos k1 + cos k2 + cos k3)
]

, (97)

ψ2 =
π

n + 1
l2 , (98)

and

ψ3 =
π

n + 1
l3 . (99)

Here l1 = 0, ..., (n/2), l2 = 1, ..., n, and l3 = 1, ..., n, provided that n is an even
integer. Note that in Eq. 97 the sign + should be taken for l1 = 0 and both signs
± for l1 �= 0.

Equations 97 to 99 indicate that there are three branches in the relaxation
spectrum of the polymer network under study. First, the main branch ψ1, de-
fined by Eq. 97, includes the phase shift along the Rouse chain (see the first
term in Eq. 97) and also k = (k1, k2, k3). Therefore, this branch involves both
intra- and interchain relaxation processes, which are coupled in a rather com-
plicated way, see Eq. 97. Remarkably, when the intrachain phase shift does
not contribute to ψ1 (l1 = 0 in Eq. 97) one has a purely interchain sub-branch,
ψnet ≡ ψ1(l1 = 0) [25, 66]:

ψnet =
1

n + 1
arccos

[
1
3

(cos k1 + cos k2 + cos k3)
]

, (100)

which corresponds to the cooperative network relaxation only. In contrast,
when l1 �= 0, intrachain relaxation also shows up. The corresponding sub-
branch depends now on the phase shift k between the network sites. More
specifically, each intrachain mode 2πl1/(n + 1) in Eq. 97 is split into bands
consisting of a large number of sublines. These sublines are related to the
different values of k. Second, the sets ψ2 and ψ3, defined by Eqs. 98 and 99,
give the purely intrachain branches of the relaxation spectrum. In fact, this
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is a single double-degenerated branch, which does not depend on the phase
shift between the network cells and which coincides with the spectrum of the
Rouse chain with fixed ends [25, 66].

At this point, it is worth pointing out the relation between the present
network model built from Rouse chains and the coarse-grained interpreta-
tion of the cubic network considered in Sect. 5.1.1. The underlying idea is
that, on sufficiently large scales (k � 1), which correspond to the relaxation
of the large network, both models must lead to the same set of relaxation
times (eigenvalues). The comparison of Eq. 74 in the coarse-grained case with
Eqs. 86 and 100 for a network cross-linked from Rouse chains leads to the
following relationship between the characteristic relaxation times of both
models [25, 66]:

τCG = 3(n + 1)2τ0 , (101)

where CG indicates coarse-graining. Equation 101 has a nice physical
interpretation in terms of the elasticity and friction constants, namely
KCG = K/(n + 1) and ζCG = 3(n + 1)ζ . In other words, the elastic constant of
a spring in a coarse-grained network is equal to the overall elasticity of the
Rouse chain between the cross-links (one has (n + 1) springs of elasticity K
connected in series) and the friction of a junction in a coarse-grained net-
work corresponds to the friction of a junction (ζjun = 3ζ) in a network of
Rouse chains plus half of the contributions of the six Rouse chains (6(n/2)ζ)
directly attached to this junction. These relations provide a straightforward
mapping of the cooperative interchain relaxation of a network built from
Rouse chains to a less-detailed, coarse-grained model.

To summarize, the relaxation times (or eigenvalues) of a rather complex
system such as a 3-D topologically-regular network end-linked from Rouse
chains were determined analytically. In fact, one can do even better: it is
possible to construct all of the eigenfunctions of the network analytically
(which amounts to the transformation from Cartesian coordinates to nor-
mal coordinates). Briefly, to construct the normal mode transformation, see
Eqs. 84 and 85, one has to combine the Langevin equations of motion of a net-
work junction, Eq. 80, and the boundary conditions in the network junctions,
Eqs. 87 to 92. After some algebra one finds [25, 66]:

Rp(Ω; j; t) �
∑

k,ψ1

exp(ikp) sin( jψ1) + sin[(n + 1 – j)ψ1]

sin[(n + 1)ψ1]
(102)

×exp(iΩ ·k) Q1(k; ψ1; t)

+
∑

k,ψ2

exp(iΩ ·k)fp(k, ψ2) sin( jψ2) Q2(k; ψ2; t)

+
∑

k,ψ3

exp(i Ω ·k)fp(k, ψ3) sin( jψ3)Q3(k; ψ3; t) .
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Here Q1(k; ψ1; t), Q2(k; ψ2; t), and Q3(k; ψ3; t) are three sets of normal coor-
dinates (eigenfunctions), which are related to the corresponding branches of
the relaxation spectrum (ψ1, ψ2, and ψ3), the fp(k, ψ) are functions of k, ψ2,
and ψ3; furthermore, the index p represents a particular chain in a given net-
work cell and can take the values 1, 2, or 3 for one of the three chains in the
network cell, respectively, or the value 0 for a network junction.

Knowledge of the eigenfunctions, Eq. 102, allows us to get analytical ex-
pressions not only for the macroscopic dynamic characteristics (averaged
over all monomers), but also for local quantities of interest, related to indi-
vidual cross-links or individual chain monomers [25, 66]. In view of space
restrictions we will not provide these details here, instead we turn to the dis-
cussion of the macroscopic viscoelastic properties of the system. The reader
interested in the details is referred to the original papers [25, 66].

An analysis of the viscoelastic mechanical relaxation of polymer networks
built from Rouse chains shows the appearance of a new characteristic time
(in addition to τ0), namely the (maximal) relaxation time of a chain between
neighboring network junctions, τchain. This time is of the order of magnitude
of τCG, see Eq. 101, in other words τchain � (n + 1)2τ0; in general, it separates
the intrachain from the interchain relaxation processes of the network. In
particular, the storage modulus G′(ω) at rather high frequencies, ω > 1/τchain,
(in the domain of the intrachain relaxation) behaves as ω1/2, in other words

Fig. 7 Reduced storage modulus [G′(ω)] plotted on double logarithmic scales versus the
reduced frequency ωτ0 for a 3-D topologically-regular cubic (40×40×40) network cross-
linked from Rouse chains of 20 beads each (solid line). Also shown are the contributions
to the [G′(ω)] that come from intrachain relaxation (solid line with circles) and interchain
relaxation (solid line with stars)
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in the same fashion as the linear Rouse chain, see Fig. 7. In contrast, in
the domain of large-scale cooperative relaxation, ω < 1/τchain, one observes
the ω3/2-behavior typical of topologically-regular cubic networks [25, 66, 71].
Furthermore, given that we have an analytical solution, one can directly com-
pare the contributions of the intra- and of the interchain relaxation to the
network’s dynamics. For instance, under reasonable choices for the number
of beads in the network’s chains, the storage modulus G′(ω) is determined
mainly by interchain processes at low frequencies and by intrachain processes
at high frequencies, see Fig. 7. The same holds with respect to the frequency
behavior of the dynamic viscosity η′(ω) of the system, plotted in Fig. 8. What
is of particular interest here is that the intra- and interchain relaxation pro-
cesses contribute in comparable ways to the viscosity at zero frequency [25],
see Fig. 8. We recall that the analytical treatment of a topologically cubic
network built from Rouse chains assumed that Eq. 93 holds, which relates
the friction constants of the junctions to those of the chain beads. However,
it turns out that this condition does not influence our general conclusions
much. A special numerical analysis [21] found almost no changes in the dy-
namic modulus of the network when the ratio ζjun/ζ was varied between 0.1
to 10.

We close by noting that for rather long Rouse chains one can use a con-
tinuum description. The derivation of the relaxation times (eigenvalues) of
the network then closely follows the procedure used above [71, 72]. The main
results stay unchanged. For a three-dimensional polymer network one ob-

Fig. 8 Reduced shear viscosity [η′(ω)] plotted on double logarithmic scales versus the re-
duced frequency ωτ0 for the same network built from Rouse chains as in Fig. 7. Again,
we show the contributions of intrachain relaxation (solid line with circles) and interchain
relaxation (solid line with stars)
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serves two major relaxation domains: a Rouse-like, rather small-scale intra-
chain relaxation region, where H(τ) ∼ τ–1/2, and a cooperative, large-scale
network relaxation region, where H(τ) ∼ τ–3/2 [71, 72]. Historically, networks
built from continuous elastic chains were considered earlier than their dis-
crete analogs. However, in the spirit of this review, we chose to focus our
exposition on discrete networks, true GGS, built from Rouse chains.

5.2.2
Topologically-Square Networks

The considerations of the previous section carry over to topologically-regular
networks of lower dimensionality; for example to a two-dimensional square
network built from Rouse chains. We stress again that such a network is two-
dimensional only in the sense of connectivity, and that we consider its motion
in the three-dimensional Cartesian space (schematically the network behaves
as a fishing net in water or, more accurately, honey). In the case of a square
network built from Rouse chains an analytical solution is again possible if the
friction constant of the network junctions is twice as large as that of the chain
beads (see Eq. 93 for the three-dimensional case) [68, 69]. The derivation of
the eigenvalues proceeds as in Sect. 5.2.1, again leading to Eq. 86, where the
intrachain phase shift ψ is now given by (see Eqs. 97 to 99) [68, 69]:

ψ1 =
2π

n + 1
l1 ± 1

n + 1
arccos

[
1
2

(cos k1 + cos k2)
]

(103)

and

ψ2 =
π

n + 1
l2 , (104)

where l1 = 0, ..., (n/2) and l2 = 1, ..., n (here n is assumed to be even); fur-
thermore, k = (k1, k2) are restricted by Eq. 75. Of particular interest here is
that the structure of the eigenmodes is simpler than in the three-dimensional
case: the purely intrachain branch of the spectrum, which coincides with
the spectrum of a single Rouse chain and which is doubly degenerate in
a cubic network (see Eqs. 98 and 99 for ψ2 and ψ3) is not degenerate anymore
(see Eq. 104 for ψ2).

The relaxation spectrum (as well as the viscoelastic quantities derived
from it) obeys features typical of two dimensions: while one finds the stan-
dard Rouse chain behavior, H(τ) ∼ 1/

√
τ , at rather short times (on small

scales of motion), at longer times H(τ) goes as 1/τ , a behavior intermedi-
ate between that of uncrosslinked Rouse chains and that of three-dimensional
networks. Once again we note in the exponents of τ the parallelism between
regular and fractal networks, as discussed in Sect. 5.1.2.

It is noteworthy that the same results were found by Chompff and Duiser
using a different approach [70]. They proposed a decoupling procedure
which, upon being applied to polymer chains cross-linked into a network,
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leads to an assembly of uncrosslinked chains of various lengths. The essence
of the approach may be illustrated with a simple example: let us consider four
chains of N monomers (beads), each of which is connected by one end to
a certain cross-link point (single network junction), while the other end of
each of these four chains is assumed to be fixed in space. It can be shown by
means of simple operations involving the connectivity matrix that this sys-
tem is equivalent to a single chain of 2N monomers and to two chains of N
monomers (all of the chains have fixed ends). The appearance of a chain of
double length (2N monomers) reflects the interchain connections [70]. The
relaxation spectrum, which is obtained by applying the above decoupling pro-
cedure to a square network consisting of Rouse chains, is found to follow
a Rouse chain behavior at rather short times, H(τ) ∼ 1/

√
τ , whereas at longer

times H(τ) goes as 1/τ [70], in other words it displays two-dimensional
character.

5.3
Regular Networks Built from Complex Cells
of Arbitrary Internal Topology

The analysis of the previous section centered on systems of Rouse chains
end-linked into regular networks and demonstrated the influence of the GGS-
structure on the dynamics; one observes Rouse chain behavior in determined
(time or frequency) ranges, whereas in other ranges the relaxation is dom-
inated by the large-scale network structure. In this section we extend this
study to more complex systems and replace the Rouse chains by rather ar-
bitrary building blocks (subunits). For such subunits, even when they are
connected into regular networks, the possibility of a general analytical treat-
ment gets lost. However, under certain conditions, the network’s symmetry
still provides opportunities to simplify the problem considerably.

For this we turn to a formalism which allows us to study the dynamics
of regular networks built from topologically complex cells (substructures).
We let the cells (consisting of beads connected by elastic springs) have an
arbitrary internal architecture, and require only that they be topologically
identical to each other, see Fig. 9. Obviously, the regular networks built from
Rouse chains which were considered in Sect. 5.2 also fall into this category; in
this case a cell of the network contains a junction and d Rouse chains directly
attached to the junction (here d is the dimensionality of the network).

Below we consider a (topologically) cubic network (following [31, 74]
closely). An elementary cubic cell of the network is denoted by Ω = (α, β, γ )
(here α, β, and γ range from 1 to N) and it contains s beads, which we number
by the index j ∈ {1, ..., s}. The whole network consists then of Ntot = sN3 beads,
denoted by ( j, Ω) ≡ ( j, α, β, γ ). All of the beads (which have identical friction
constants ζ) are connected to their neighbors by means of elastic springs all
of which have the same elasticity constant K. The Langevin equation of mo-
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Fig. 9 Schematic representation of a regular network built from complex cells. For clarity’s
sake a two-dimensional square network is shown. Each cell has some arbitrary internal
GGS structure (see magnifying glass), which is identical in all cells

tion for the lth bead of the network is given by Eq. 2 with F(ext)
l (t) = 0. Because

of the symmetry of the regular network, the determination of the eigenvalues
of the connectivity matrix A simplifies considerably. The elastic term in Eq. 2
reads [31, 73, 74]:

Ntot∑

m=1

AlmRm(t) =
s∑

i=1

∑

Ω′
AjΩiΩ′ RiΩ′ (t) (105)

=
s∑

i=1

AjΩiΩRiΩ(t) +
s∑

i=1

∑

Ω′
Ω′ �=Ω

AjΩiΩ′ RiΩ′ (t) .

Here we let l → ( j, Ω) and m → (i, Ω′). Because of symmetries, we can now
set B(int)

ji ≡ AjΩiΩ and B(ext)
ji (∆) ≡ B(ext)

ji (Ω – Ω′) ≡ AjΩiΩ ′ in Eq. 105. This
brings us to [31, 74]:

Ntot∑

m=1

AlmRm(t) =
s∑

i=1

B(int)
ji RiΩ(t) +

s∑

i=1

∑

∆

B(ext)
ji (∆)RiΩ–∆(t) , (106)

where ∆ = Ω – Ω ′ denotes the difference between the network cells Ω

and Ω′, given in the units of number of intervening cells in each direction.
In Eq. 106 the matrix B(int) = (B(int)

ji ) specifies the connections inside a given

cell consisting of s beads. In contrast, the matrices B(ext)(∆) = (B(ext)
ji (∆)) de-

fine the intercell connections: their non-zero elements B(ext)
ji (∆) are equal

to – 1, indicating that bead j of cell Ω and bead i of cell Ω′ = Ω – ∆

are connected by a spring (bond). In a regular network built from cells,
each elementary cell is directly connected to its nearest-neighbor cells only;
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for a topologically-cubic network the ∆ are therefore given by the set
{(1, 0, 0), (– 1, 0, 0), (0, 1, 0), (0, – 1, 0), (0, 0, 1), (0, 0, – 1)}.

Due to the symmetry inherent in Eq. 106, the diagonalization of the con-
nectivity matrix A of the network can be now simplified. From a formal point
of view the situation is very close to that met in solid state physics (Bravais
lattice with a basis) [75–77], where the basis of the lattice plays the role of
our elementary network cell. Note, however, that in the arguments leading to
Eq. 106 only the connectivity (a topological feature) enters. Hence, the net-
works considered here are not required to be translationally invariant. As an
example, the positions of the beads ( j, Ω), ( j, Ω + ∆), and ( j, Ω + 2∆) are
not necessarily related by a single translation operator, as would be (in first-
order) the case in a crystal. Here we have a network consisting of flexible
substructures (cells), whose conformations change widely under the under-
lying random stochastic forces, and hence differ much from cell to cell.
Nevertheless, using Eq. 106, we can proceed quite formally: we apply peri-
odic boundary conditions to the whole network and look for solutions to our
Langevin equations of the form:

RjΩ(t) =
∑

k1,k2,k3

Cjk exp(i[k1α + k2β + k3γ ]) exp(– λ(k)t/τ0) . (107)

Here Ω=(α,β,γ ), the Cjk are constants, τ0 = ζ/K is the characteristic relax-
ation time, and k = (k1, k2, k3) is given by ki = 2πmi/N, where the mi are
integers with 0 ≤ mi ≤ (N – 1) for i = 1, 2, and 3 (see also Eq. 75). We recall
that the triple k is not a reciprocal vector, as in solid state physics; it is simply
a means to count the eigenmodes. We now define the new matrices:

Bji(k) = B(int)
ji +

∑

∆

B(ext)
ji (∆) exp(– ik·∆) . (108)

The matrices B(k) = {Bji(k)} include all relevant information concerning the
intra-cell topology and the way in which the cells of the network are con-
nected to each other. All in all there are N3 k-values and therefore N3 different
B(k) matrices. Using the B(k) matrices, the Langevin equations, Eq. 2, are
reduced to [31, 73, 74]:

λ(k)Cjk =
s∑

i=1

Bji(k)Cik . (109)

The symmetry, therefore, helped to simplify the problem: instead of having to
diagonalize A, which is a (sN3 × sN3)-matrix, we only need now to diagonalize
N3 different (s× s)-matrices [31, 74].

It is important to stress at this point that the derivation of Eq. 109 is general
and that it holds for an arbitrary topological structure of the cells involved.
Moreover, the cubic network considered here is only a particular example;
the approach can be easily extended to other network types. For instance, all
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of the results of this section are also valid for a square network built from
complex substructures; to describe it one simply has to set k3 = 0 in all the
k-dependent equations established so far. Also, the method discussed here
can be extended to copolymer networks, whose building blocks (cells) may
consist of different beads (say, with different mobilities) [21]. In the follow-
ing sections we will use the general formalism developed in this section for
various systems of complex topology, such as polymer networks bearing den-
dritic wedges [78], dendrimer-based polymer networks [74], and networks
made up from disordered subunits [31, 73].

6
Fractal Polymer Networks

After discussing the situation in topologically-regular, mesh-like polymer
networks in the previous section, we turn now to the general situation. Here
we will display the possibilities of describing complex networks using ideas
of scale freedom. Typical of such approaches are models based on fractal
structures and notions akin to them. In a first step we will consider a phe-
nomenological, general approach that leads to classic viscoelastic models;
this allows us to make connections both to the microscopic models discussed
in the previous paragraphs and also to global descriptions, rooted in frac-
tional differential equations. In the next steps we then turn our attention
to simple fractal networks, such as ladder models, and to Sierpinski gasket
structures.

6.1
General Approach: Generalized Viscoelastic Models

Historically, the viscoelastic properties of polymers were initially modeled by
combining springs and dashpots. A sequential combination of a spring and
a dashpot is called the Maxwell model. Denoting the stress by σ and the strain
by ε, we have for the spring

σ1(t) = E ε1(t) (110)

and for the dashpot

σ2(t) = η
dε2(t)

dt
, (111)

where E is related to Young’s modulus and ε to the viscosity. The equation for
σ and ε then reads (constitutive equation):

σ(t) + τ
dσ(t)

dt
= τE

dε(t)
dt

, (112)
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with τ = η/E. As already noted in Sect. 3.1.2, the response of σ(t) to a stepwise
change in ε (to ε(t) = ε0θ(t)) is the relaxation modulus G(t). For the Maxwell
model it follows:

G(t) = E ε0 exp(– t/τ) , (113)

which is clearly the special case of Eq. 26 for one mode with τk = 2τ . Now,
Eq. 25 can be rewritten in terms of the storage modulus

G′(ω) ≡ ω

∞∫

0

G(t) sin(ωt) dt (114)

and of the loss modulus

G′′(ω) ≡ ω

∞∫

0

G(t) cos(ωt) dt . (115)

In the case of the Maxwell model these are simply

G′(ω) = E ε0
(ωτ)2

1 + (ωτ)2 (116)

and

G′′(ω) = E ε0
ωτ

1 + (ωτ)2 (117)

which are, again, special cases of Eqs. 20 and 21. Evidently, realistic polymer
models are not well-represented by these simplistic forms, Eqs. 116 and 117;
in general, Eqs. 20 and 21 have to be used. A notable exception occurs when
G(t) is (at least, over a certain range of t) self-similar; in other words when it
is an algebraic function of time,

G(t) ∼ t–α , (118)

see Eq. 66 as an example. Then such a behavior can be captured by changing
the derivatives in the constitutive equation, Eq. 112, to fractional deriva-
tives [8, 9]. Furthermore, the scaling displayed by G(t) in Eq. 118 is typical of
anomalous diffusion.

Regular diffusion, better known as Brownian motion, is characterized
(in the absence of directed, external fields) by a linear increase of the mean-
square displacement with time, see Eq. 60 for the motion of the center of
mass. For anomalous diffusion this simple relation does not hold anymore.
Then the temporal evolution of the mean-square displacement is non-linear,
and at long times often obeys

〈R2(t)〉 ∼ tγ , (119)

with γ �= 1. In the case that γ < 1, one denotes the behavior as subdiffusive.
We remark that, in many instances, such as in the presence of a constant,
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non-zero electric field (say, oriented along the y-axis), Eq. 119 turns out to be
equivalent to the relation [2, 9, 13]

〈Y(t)〉 ∼ tγ , (120)

where we have R = (X, Y, Z). For simply-structured particles (the ideal case
being point-like objects) the pattern of motion of Eqs. 119 and 120 often
results from disorder [79–84]; for polymer chains – as studied here, see
Eq. 68 – the motion of the monomers also obeys Eq. 119 in the absence of
disorder; the reason for this is the relaxation of the internal modes of the
structure [85]. Furthermore, Eq. 119 is also obeyed during several motional
stages in melts of polymer chains; then one has reptation [4] and the pro-
cesses giving rise to disentanglement are characterized by different exponents
γ in Eq. 119 [2, 4, 41].

Recently, besides the classical way of describing anomalous diffusion via
continuous time random walks (CTRW) and Lévy-walk models [79–83, 86–
92], descriptions based on fractional derivatives have also attracted much
interest [8, 9, 93–95]. As a reminder, one has as the defining relation for frac-
tional derivation the Riemann-Liouville expression:

dαf
dtα

≡ 1
Γ (– α)

t∫

0

f (t̃)
(t – t̃)α+1 dt̃ . (121)

In Eq. 121 Γ (z) is the Gamma-function and the expression extends the (inte-
ger) recursive integration to the domain of real α; differentiation is obeyed for
α > 0, integration for α < 0. In general, all differentiation rules such as

dαf
dtα

=
dβ

dtβ

(
dα–βf
dtα–β

)
(122)

hold. Now it turns out that replacing the usual derivatives by fractional
derivatives in the constitutive equation of the Maxwell-model, Eq. 112,
leads to:

σ(t) + τα–β dα–βσ(t)
dtα–β

= ταE
dαε(t)

dtα
(with 1 > α > β) , (123)

an expression which offers an excellent description of many polymeric sub-
stances, see [8, 9] for details.

Following the developments outlined in [8, 9], we now stress the fact that
anomalous diffusion in the scaling form of Eqs. 119 and 120 is closely con-
nected to descriptions based on fractional derivatives, given that they allow
us to invert, in a simple way, the integral expressions which follow from the
theory of linear response, when the anomalous behavior has a power-law
character going as Eq. 119, with γ < 1. For technical reasons and because of an
intimate relation to linear response we prefer, as in [8, 9], to extend the lower
integration limit in Eq. 121 to – ∞; in this way we obtain the Weyl-form.
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It is now a simple matter to show that the Weyl-form of fractional calcu-
lus is an exceedingly powerful mathematical method when treating materials
whose internal processes obey algebraic decays. We follow here the descrip-
tion given in [9]. Denoting the response of the system to an external perturba-
tion Ψ (t) by Φ(t), one can express the relation between these two functions in
terms of Φs(t), the response of the system to a step perturbation θ(t). Namely,
because of the superposition principle and of causality, in the framework of
linear response one obtains:

Φ(t) =

t∫

–∞
dt̃Φs(t – t̃)

dΨ (t̃)
dt̃

. (124)

In general, Eq. 124 is difficult to invert, being an integral relation. However,
for algebraic Φs, in other words Φs ≡ C

Γ (1–γ )

(
τ0/t

)γ , where 0 < γ < 1, it fol-
lows that

Φ(t) = Cτ
γ
0

1
Γ (1 – γ )

t∫

–∞

dt̃
(t – t̃)γ

dΨ (t̃)
dt̃

= Cτ
γ
0

dγΨ (t)
dtγ

, (125)

where we used the repeated differentiation given in Eq. 122. Clearly, now
Eq. 125 can be readily inverted, since it is a simple fractional derivative. The
inversion reads

Ψ (t) =
1

Cτ
γ
0

d–γΦ(t)
dt–γ

. (126)

Evidently, one can simply read-off from Eq. 126, by inverting the argument
leading from Eq. 124 to Eq. 125, that the response Ψs(t) to a step perturbation
θ(t) of Φ is:

Ψs(t) =
C–1

Γ (1 + γ )

(
t
τ0

)γ

. (127)

This last relation makes it clear that the strain (extension) of the object under
an external stress (force) now simply obeys, due to 0 < γ < 1, the subdiffusive
law expressed by Eq. 120. Given that many macromolecular systems display
such a subdiffusive behavior, it now becomes evident why they can be de-
scribed very well through expressions involving fractional derivatives; as long
as the response is linear, scaling behavior and fractional derivatives reflect the
same underlying physics. In the following subsections we will see that fractal
GGS also show scaling, where γ is related to the spectral dimension d̃ of the
fractal.
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6.2
A Simple Fractal Network: The Ladder Model

Here we start with the ladder model, which is a simple example of a hier-
archical (scaling) network [26, 96–100]. The model has its electrical analog
and turns out to be a basic element in the fractional differential picture [8, 9].
From a mathematical point of view, in a simple ladder model version the
equations are identical to those of the Rouse model for a single chain. Ladder
models are very useful for providing a microscopic (if somewhat idealized)
picture of gels, as well as in modeling different gelation stages. If one focuses
on end-linking reactions in a prepolymer which is far below the entanglement
limit, one finds a power-law behavior, G∗(ω) ∼ (iω)α, near the gel point for
the complex dynamic modulus [101–103]. This behavior appears in quite ex-
tended frequency ranges and is followed by a liquidlike behavior in the case
of a pregel and by a solidlike behavior for a postgel structure. Moreover, for
stoichiometrically-balanced gels, one often finds α ∼= 1/2. This value appears
to be rather insensitive to the choice of the prepolymer, to the cross-linker
functionality, and to the chain length [101, 102].

In order to describe pregel, postgel and gel situations, ladder models were
used [100]. A ladder model is depicted schematically in Fig. 10; it consists of
springs (with spring constants E0, E1, E2, ...) along one of the struts of the lad-
der and dashpots (with viscosities η0, η1, η2, ...) along the ladder rungs. Three
different types of boundary conditions can now be envisaged: finite ladder ar-
rangements are appropriate to model pregels and postgels; for a pregel the
ladder finishes with a spring (En) and a dashpot (ηn) in series (a Maxwell
element) and for a postgel with a spring (En). On the other hand, an infinite
ladder arrangement (Fig. 10) is necessary to model the gel point. The complex

Fig. 10 Infinite ladder model
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dynamic modulus G∗(ω) in the case of a pregel reads [100]:

G∗(ω) =
E0

1 +
(iω)–1(E0/η0)

1 +
(iω)–1(E1/η0)

1 +
· · · (128)

(iω)–1(En/ηn–1)
1 +

(iω)–1(En/ηn)
1

,

and, correspondingly, one has for a postgel situation [100]:

G∗(ω) =
E0

1 +
(iω)–1(E0/η0)

1 +
(iω)–1(E1/η0)

1 +
· · · (129)

(iω)–1(En–1/ηn–1)
1 +

(iω)–1(En/ηn–1)
1

,

where the standard notation of continued fractions, a/(b + ) f = a/(b + f ), is
used.

For G∗(ω) at the gel point (an infinite ladder arrangement) the expres-
sion is akin to Eqs. 128 and 129, but it involves an infinite continued fraction.
A simple special case may be obtained by making all of the springs and all
of the dashpots equal (E0 = E1 = ... = E and η0 = η1 = ... = η). Then at the gel
point the complex dynamic modulus G∗(ω) reduces to [100]:

G∗(ω) = E(iωτlad)1/2
[(

1 +
iωτlad

4

)1/2

–
(

iωτlad

4

)1/2 ]
, (130)

where τlad = η/E is the characteristic relaxation time of the ladder model
under study. In the low-frequency domain, ωτlad � 1, Eq. 130 leads to
a power-law behavior, G∗(ω) � E(iωτlad)1/2. Thus, an infinite ladder arrange-
ment built from identical springs and identical dashpots leads to a power-law
behavior for the storage modulus, G′(ω) ∼ ωα, with α = 1/2 [100].

That we recover the intermediate G′(ω)-behavior of the Rouse model in
this way is only surprising at first sight. In fact, a second look at Fig. 10 clar-
ifies the equivalence between the ladder model and the Rouse chain. In both
there is a sequential connection between neighboring elements through har-
monic springs; furthermore, each element has a local, dissipating, energy
sink. The behavior of finite ladder arrangements built from identical springs
and dashpots may appear even more familiar now. Their storage modulus
also demonstrates a ω1/2-behavior, but only in an intermediate frequency do-
main, which here extends up to a crossover frequency which was numerically
found to be ωτlad � 4/n2, where n is related to the ladder length, see Eqs. 128
and 129. This corresponds exactly to the behavior of Rouse chains.

Moreover, for the pregel finite ladder ending with a Maxwell element
(a spring and a dashpot in series) one finds at low frequencies a liquidlike be-
havior, G′(ω) ∼ ω2. For the postgel ladder, which consists of (n + 1) springs
in series and whose ends are both springs, one finds a solidlike behavior,
G′(ω) � E/(n + 1); this is also the low-frequency behavior of a Rouse chain
whose ends are fixed.
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Furthermore, recall that one often finds α values which deviate from
1/2 [103]. It turns out that the above ladder model can be modified in several
ways, so that α can take arbitrary values between 0 and 1. One of these possi-
bilities is to choose the spring constants Ek and the viscosities ηk so that they
fulfill [97, 100]:

Ek = C1k(1–2α) and ηk = C2k(1–2α) , (131)

where C1 and C2 are constants. It can be shown that the complex dynamic
modulus G∗(ω) of a ladder built from such springs and dashpots does indeed
follow a ωα-behavior [97]:

G∗(ω) ∼ ωα . (132)

Another possibility, which mimics the geometrical situation better, is to con-
nect the dashpots through springs in a network structure, say a fractal one,
while keeping the simple forms Ek = E = const and ηk = η = const [8, 9, 100].
Again, this model gives rise to a ωα-behavior for G∗(ω). We close by noting
that all these ladder models are mechanical realizations for fractal elem-
ents [8, 9], since they fulfill equations of the form

σ(t) = C
dαε(t)

dtα
, with 0 ≤ α ≤ 1 . (133)

6.3
Dual Sierpinski Gasket Structures

Let us turn now to GGS which show more complex structures. Foremost in
our mind is to focus on GGS whose eigenvalue spectra can be readily deter-
mined. As previously discussed, the evaluation of the main relaxation forms,
Eqs. 20, 21, and 50 is straightforward, under the condition that all eigenval-
ues are known. This also determines the way to proceed: what is needed is
to diagonalize the A matrix in Eq. 10 in order to obtain the corresponding
eigenvalues needed to compute the relaxation functions.

Given that the interesting intermediate temporal range is limited by the
two (terminal) regions previously discussed, say, for G′(ω) by the domains at
quite small and at quite large frequencies, regions in which all finite GGS sys-
tems behave in the same way, one has to consider very large GGS. This is the
case because one has to work out the behavior typical for the GGS-class under
investigation, behavior which shows up only in the intermediate range; hence
it is very important that the GGS considered be very large in order for the
intermediate range to be sufficiently large.

Now, the problem that one faces when using numerical procedures is the
limited options available when the size of the GGS gets large. In this case,
the numerical procedures may fail, given that currently only matrices of up
to 5000×5000 elements can be readily diagonalized; one has to bear in mind
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that we need all the eigenvalues of A in the subsequent calculations of the
dynamical properties.

In the following we will focus on several regular fractal structures, for
which, due to their particular features, it is possible to determine all of the
eigenvalues semi-analytically. We stop first to note that in general the spectra
of such objects are not smooth at all [104–106]. Nonetheless, as will be-
come evident in the following, the fact that such spectra are discrete and
highly discontinuous will (if at all) hardly show up in the relevant experi-
mental quantities. Now, apart from very fine details, it turns out that the
major factor that determines the scaling behavior of the relaxation forms
considered by us in the intermediate frequency range is the spectral dimen-
sion [6–9, 94, 104–113]. Evidently, in order to be able to clearly show by
numerical means that only the spectral dimension is decisive, we have to use
very large GGS again.

The first class of deterministic fractals on which we focus are the so-called
dual Sierpinski gaskets. As we proceed to discuss, they are very closely related
to the general Sierpinski gaskets; the advantage of working with dual Sierpin-
ski gaskets is that their spectra can be determined exactly through iterative
procedures, without the need to diagonalize A numerically [105, 106, 110]. In
this way we are in a position to study extremely large fractals. An example of
a dual Sierpinski gasket is given in Fig. 11, with d = 2 as embedding space.

As for all Sierpinski-type gaskets, the construction starts [106] from a sim-
plex of δ-sites (δ = d + 1 and in Fig. 11 δ = 3); a triangle here. Such simplexes
are then iteratively connected to each other. There are two commonly-used
possibilities for continuing the construction. In the classical picture [114] all
sites of the simplex also belong to other simplexes of the same kind; one
hence superposes pairwise sites belonging to different simplexes, obtaining
the usual Sierpinski gaskets [114]. A second possibility consists of connecting
the given simplex via additional bonds to other simplexes; this is the situ-
ation displayed in Fig. 11. There, all basis sites of the smallest triangle are
connected to the tips of further identical triangles. Hence the upper part of

Fig. 11 Dual Sierpinski gasket, embedded in d = 2
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Fig. 11 depicts one complete iteration, leading to the second generation of the
fractal. The construction then gets iterated to higher generations, in Fig. 11
up to the third. In fact, the so-created object is identical to what would have
been obtained by taking the usual Sierpinski gasket, inserting a vertex at the
center of each of its triangles and connecting the vertices to each other [104].
We stop to note that both the Sierpinski gasket and also its dual are naturally
embedded in the d = δ – 1 dimensional space, here in d = 2. Note that going
from the usual Sierpinski gasket to its dual reduces the coordination num-
ber of the sites of the fractal from d + 2 to d + 1. However, as can be easily
seen (and as was also pointed out in [104–106, 110]), the usual gasket and its
dual have exactly the same fractal d̄ and spectral d̃ dimensions; these are, for
a general d-dimensional embedding space, setting δ = d + 1:

d̄ =
ln(d + 1)

ln 2
=

ln δ

ln 2
(134)

and

d̃ =
2 ln(d + 1)
ln(d + 3)

=
2 ln δ

ln(δ + 2)
. (135)

As a side-remark, we note that for special values of d, namely for d = 3, 7, 15,
and so on, d̄ is an integer. Then, as shown in [106, 115], other possibilities for
embedding the dual Sierpinski gaskets into Euclidean space exist.

The major advantage of focusing on dual Sierpinski gaskets is that their
eigenvalues can be obtained iteratively [105, 106, 110]. One proceeds as fol-
lows: from the eigenvalue spectrum at stage n, one obtains the eigenvalues at
stage n + 1 by first assigning to each non-vanishing eigenvalue λn–1 two new
eigenvalues λ±

n through the relation:

λ±
n =

(δ + 2)±√
(δ + 2)2 – 4λn–1

2
, (136)

with

δ = d + 1 . (137)

In this way, we carry the degeneracies of λn–1 over to λ+
n and λ–

n. Further-
more, δ, with degeneracy

[
(δ – 2)δn–1 + δ

]
/2, and δ + 2, with degeneracy[

(δ – 2)δn–1 – (δ – 2)
]
/2, as well as the nondegenerate value λ1 = 0, which cor-

responds to the translation of the whole GGS are added to this spectrum as
eigenvalues. It is then a simple matter to verify that the number of eigenval-
ues at each stage is indeed equal to N = δn. Moreover, in [106] these results
were tested numerically by diagonalizing, for relatively small N values, the
corresponding A matrices. These results support the correctness of the whole
procedure in an additional, independent manner.

Using this procedure, it is now a simple matter to compute the eigenval-
ues iteratively by numerical means, even for very large values of N. Having
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Fig. 12 Reduced storage modulus [G′(ω)] plotted on double logarithmic scales versus the
reduced frequency ωτ0 for different dual Sierpinski gaskets with d = 3, 5 and 7

found the eigenvalues, it is then straightforward to numerically determine the
different relaxation quantities of interest.

Here we start by focusing on [G′(ω)], Eq. 20 together with Eq. 12, which
is plotted in Fig. 12 in double logarithmic scales using the data of [106] for
several dual Sierpinski gaskets, for d = 3 (N = 49), d = 5 (N = 67), and d = 7
(N = 86). Clearly evident is the limiting, connectivity-independent behavior
at very small and very large ω, [G′(ω)] ∼ ω2 and [G′(ω)] ∼ const, respec-
tively. In the intermediate regime, in which [G′(ω)] ∼ ωα holds (where α is
d-dependent), a careful analysis [106] demonstrates that to a very good ap-
proximation α = d̃/2, where d̃ is the spectral dimension. For larger d one
also sees some oscillations in the intermediate regions; these are due to the
hierarchical structure of the underlying dual Sierpinski gasket [106]. Simi-
lar behavior is also found for [G′′(ω)], where [G′′(ω)] ∼ ωα, with α = d̃/2 in
the intermediate domain. It remains to consider 〈〈Y(t)〉〉, which for small
and for large t is a linear function of t. In its intermediate domain one finds
〈〈Y(t)〉〉 ∼ tγ , but now γ = 1 – d̃/2 [106].

We close this section by noting that the relations between the scaling ex-
ponent and the spectral dimension are very general. We will meet them again
in Sect. 9.3, in the study of regular hyperbranched fractals. It is also notice-
able that the inclusion of hydrodynamic interactions into the dynamic picture
leads to the loss of scaling for Sierpinski-type polymers in the intermediate
regime [116, 117].
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7
Heterogeneous Polymer Networks

Up to now we have focused on the dynamics of regular networks. However,
most polymer networks and gels are random, so regular models do not reflect
the experimental situation accurately [118–126]. The wealth of possible in-
homogeneities in real cross-linked polymers is, in fact, huge and it precludes
any possibility of achieving a complete, unified theoretical treatment for all
types of heterogeneous networks. A plethora of factors affect the way in which
polymers form, and they lead to networks with large structural and dynami-
cal differences. Structural factors that may differ widely include the lengths of
the strands, the appearance of dangling chains, different local cross-link den-
sities, and cross-link agglomerations. In this section we will outline several
theoretical approaches developed to treat inhomogeneous polymer networks,
although we do not aim to present a complete coverage of the subject.

7.1
Monodisperse Random Nets

We start with the approach of Martin and Eichinger [10, 127, 128], who con-
sidered regular network structures and introduced randomness into them
through cross-linking. They started from a regular network consisting of N
vertices (cross-links), an example might be a simple ring. Now every ver-
tex is assigned the same functionality f , where f is larger than the number,
2d, of nearest neighbors in the regular network. We then add to the network
(f – 2d)N/2 bonds. The procedure then consists of increasing the functional-
ity of all of the vertices in steps of one. This was achieved in [10, 127, 128] by
inserting additional bonds sequentially and stochastically into the network.
In Fig. 13 we show a possible realization of a random network with trifunc-
tional junctions, f = 3. By repeating this procedure, we can generate random

Fig. 13 Example of a random net (reduced net) consisting of N = 10 trifunctional beads.
All beads have the same functionality, f = 3, and there are no double bonds
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nets with junctions of higher functionality. Such random networks are called
“reduced nets” [10, 127, 128]. Note that the above procedure automatically
leads to connected networks.

Following the creation of reduced nets, one diagonalizes their connec-
tivity matrices. This is done for different realizations, with f and N fixed
(10 ≤ N ≤ 100) [127]. In all cases, in the limit of large N, the eigenvalues λk of
the reduced nets appear to be linear functions of k; in other words one finds
that [127]:

λk � a
N

k + b , (138)

where a and b are constants. In fact, in [127] the constants a and b in Eq. 138
were found to obey (for f > 2):

a � 2
√

3f
(

1 –
f – 3
2N

)
(139)

and

b � f –
√

3f +
f + ( f – 3)

√
3f /4

N
. (140)

Remarkably, the spectrum of eigenvalues of a trifunctional reduced net
(f = 3) differs from that of reduced nets with higher cross-link functionality,
f ≥ 4: Eqs. 139 and 140 give a = 6 and b = 3/N for f = 3, so that the minimal
eigenvalues of a trifunctional net decrease as 1/N when the size N of the net
goes up (see Eq. 138 with k = 1). In contrast, for f ≥ 4 the minimal eigenvalue
of reduced nets is of the order of unity, so it does not depend on the net size
in the limit of large N [127].

The above reduced net model is then modified to account for local in-
trachain degrees of freedom in randomly cross-linked networks. For this
purpose each Gaussian bond of the reduced net is replaced by a Rouse chain
consisting of n beads, in other words (n + 1) springs [128]. The whole net-
work then contains N(1 + nf /2) beads; this makes a direct numerical diag-
onalization of the corresponding connectivity (N(1 + nf /2))× (N(1 + nf /2))
matrix hardly feasible, even for only moderately large networks. It turns out
that such large matrices can be handled by first reducing them algebraically
to smaller ones; for details see [10, 128]. This procedure, when applied to a re-
duced net built from Rouse chains, yields [128]:

(i) n eigenvalues of the form:

λk = 2
(

1 – cos
πk

n + 1

)
= 4 sin2 πk

2(n + 1)
, k = 1, 2, ..., n ; (141)

which are N( f – 2)/2 times degenerate and coincide with those of Rouse
chains with fixed ends [61].
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(ii) Nn non-degenerate eigenvalues, given by:

λk = 2(1 – cos θσ ,k) = 4 sin2 θσ ,k/2 . (142)

Here θσ ,k is one of the n real solutions of the following trigonometric poly-
nomial of order (n + 1) [128]:

cos [(n + 3/2)θ] + ( f – 1) cos [(n + 1/2)θ] – ( f – Λσ ) cos [θ/2] = 0 , (143)

where Λσ is one of the N eigenvalues of the connectivity matrix of the under-
lying reduced net.

(iii) N eigenvalues obtained from the complex solutions to Eq. 143,
namely one for each Λσ . These solutions may be estimated as being
θ � π – i ln( f – 1), leading to eigenvalues approximately equal to f 2/( f – 1)
[10, 128].

The relaxation spectrum H(τ) for such systems was found to obey τ–0.54

and τ–0.53 for tetrafunctional and trifunctional networks, respectively [128].
Remarkably, the authors found that the ratio of the maximal relaxation time
of the random network, τnet, to that of the Rouse chain, τchain (see also Eq. 57),
is approximately [128]:

τnet

τchain
� π2( f + ( f + 2)/n)

2( f – 2
√

f – 1 )
, (144)

which is around 87 for f = 3 and around 37 for f = 4 in the case of long
Rouse chains between the vertices, n  1. Thus, the random network con-
sidered here has a substantial domain of cooperative interchain relaxation
(τnet/τchain  1). On the other hand, the relaxation spectrum of the random
network is still very narrow; it does not depend on the network size (on the
number of vertices in the underlying reduced net, N).

We conclude by noting that [128] finds in the intermediate domain
1/τnet < ω < 1/τmin that G′(ω) ∼ ω0.57 and G′′(ω) ∼ ω0.50; this means that this
result here should be considered with care, since in the domain 1/τchain <
ω < 1/τmin the storage modulus G′(ω) is expected to mirror the behavior of
a Rouse chain. Some deviations are possible only in the domain of cooperative
relaxation, 1/τnet < ω < 1/τchain. However, the width of this domain is finite
and rather small, see Eq. 144; for f = 3 it amounts to about two orders of mag-
nitude. Therefore, it does not seem possible to extract reliable information
about scaling from the G′(ω)-plot. Finally, we remark that the above model of
random networks is, in a certain sense, too regular, since all vertices have the
same functionality f . As we will see in the next section, removing this require-
ment renders a cross-linked system much more disordered and, consequently,
less tractable.



226 A.A. Gurtovenko · A. Blumen

7.2
Small-World Rouse Networks

In very dilute solutions, long flexible macromolecules hardly see each other.
It is then reasonable, at least as a first step, to consider each chain separately.
Now, given the flexibility of the chain and the stochastic features involved,
monomers that are distant from one another along the chain’s backbone may
get to be close to each other in space. Such monomer pairs can be then
chemically cross-linked by means of, say, irradiation. The polymer structure
obtained by cross-linking in this fashion represents a realization of a so-called
“small-world network” (SWN) [129–135].

In general, SWN are built starting from an underlying, fully-ordered lattice
(say one-dimensional), in which one inserts (with probability q) additional
bonds between randomly-chosen points. In this way the SWN are interme-
diate between regular lattices and random graphs: on the one hand, a SWN
has well-defined local connections, provided by the underlying regular lattice.
On the other hand, the small amount of additional bonds strongly reduces
the minimal distances between lattice points [129, 130]. One intriguing prop-
erty of SWN built from a linear chain (ring) consists of the appearance of
a so-called “pseudo-gap” in the density of states, �(λ), which goes for small λ

as [133]:

�(λ) ∼
√

1
λ

exp
(

–
C√
λ

)
, (145)

where C is a constant. Equation 145 implies that the probability of finding
SWN eigenvalues very close to λ = 0 is extremely small.

Now, the cross-linked chain discussed above may be viewed as being
a SWN. Here the original chain plays the role of the underlying regular lat-
tice, while the random cross-linking of the monomers by irradiation creates
the extra bonds. Or, one starts from a SWN and views its sites as being beads
and its bonds as being elastic springs, see Fig. 14 as an example. Such GGS
are called small-world Rouse networks (SWRN), as introduced by Jespersen
et al [136].

Fig. 14 Example of a SWRN constructed from a Rouse chain by inserting into it additional
bonds (shown here as dashed lines) between randomly chosen beads
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To study how the disorder (additional bonds) introduced into a regular
lattice affects its dynamics, several features were investigated [32]. For this
a specific realization of a SWRN is constructed starting from a Rouse chain
consisting of N = 1000 beads connected by elastic springs. Then additional
links (AL) – springs with the same elastic constant – are inserted; these con-
nect each bead of the initial Rouse chain to another bead, picked randomly,
with probability q/N, see Fig. 14. The eigenvalues of the corresponding con-
nectivity matrix are then computed using direct numerical diagonalization
techniques; after accumulating the eigenvalues from a sufficient number of
realizations (in [32], 100 are used), one uses them to calculate, among others,
the dynamic functions [G′(ω)] and [G′′(ω)].

In Fig. 15 we display the storage modulus [G′(ω)] of such a SWRN for dif-
ferent values of q. The case q = 0 is the standard Rouse chain, whose [G′(ω)]
(and [G′′(ω)]) were amply discussed in Sect. 4. In particular, for q = 0 one can
distinguish in Fig. 15 three characteristic scaling domains; in them [G′(ω)]
scales (from the low frequency side) as ω2, ω1/2, and ω0, respectively. The
non-trivial behavior is the intermediate one; for the Rouse chain one finds
a ω1/2-law [1–3]. This behavior changes drastically when q �= 0: even a small
number of additional bonds inserted into the Rouse chain destroys the scal-
ing in the intermediate range. In Fig. 15 this already takes place for q = 0.02.
Moreover, with increasing q the intermediate range itself gets smaller; this is
due to the fact that the additional bonds increase the stiffness of the system

Fig. 15 Reduced storage modulus [G′(ω)] plotted on double logarithmic scales versus the
reduced frequency ωτ0 for a SWRN consisting of N = 1000 beads. The probability q of
having additional links present varies from q = 0 (Rouse chain) to q = 0.8. All [G′(ω)]-
curves were averaged over 100 SWRN realizations
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and lead to the disappearance of low-lying modes, the so-called “pseudo-gap”
SWRN situation [32]. Hence, by starting from q = 0 and increasing q, the
[G′(ω)]-curves in the domain of the terminal, ω2-relaxation shift strongly to
the right. This fact can be used, in particular, to experimentally determine
changes in the spectrum due to disorder.

As for the loss modulus [G′′(ω)], the effects of disorder on it are simi-
lar to those on [G′(ω)]. [G′′(ω)] displays a maximum, whose position is
mainly determined by rather high frequency modes, which correspond to the
motion of just a few SWRN beads; hence the position of the maximum de-
pends only weakly on q. At intermediate frequencies, as discussed in Sect. 4,
the loss modulus of the Rouse chain (q = 0) also obeys the scaling behav-
ior [G′′(ω)] ∼ ω1/2 on the left side of the maximum, see Eq. 64 [1–3]. Even
a slight increase of q quickly destroys the intermediate scaling behavior: scal-
ing is extremely sensitive to the presence of even a few additional bonds,
which transform the Rouse chain into a SWRN [32]. Also, the largest devia-
tions of [G′′(ω)] from the Rouse chain case happen on the low-energy side,
again reflecting the fact that it is here that most changes of the spectrum
occur. Another interesting feature of [G′′(ω)] is the fact that for fixed N its
maximum increases with increasing q. The explanation is straightforward:
the increase in disorder (number of additional bonds) in SWRN does not
lead to an increase in the energy loss, which is related to the area under the
[G′′(ω)]-curves in linear scales. However, since with increasing q the shape
of the [G′′(ω)]-curves is strongly squeezed in the low-frequency domain, the
maximal value of the loss modulus [G′′(ω)] has to increase with q in order
to keep the aforementioned area constant [32]. In summary, the dynamical
properties of SWRN show a strong sensitivity to disorder.

Similar conclusions can be drawn from considering the motion of SWRN
beads under external forces [136], as given by 〈〈Y(t)〉〉, see Eq. 50, when the
parameter q is varied. For q = 0 one finds the usual Rouse behavior at in-
termediate times 〈〈Y(t)〉〉 ∼ √

t/τ0, see Eq. 69. Again, introducing additional
bonds into the Rouse chain changes the situation drastically: increasing q
increases the stiffness of the polymer system, and therefore decreases the
maximum relaxation time of the SWRN. This shortens the domain of inter-
mediate times and for large q even leads to the appearance of a plateau-type
behavior [136].

7.3
Polymer Networks with Random (Nonfractal) Heterogeneities:
Localization Effects

Vilgis and Heinrich [137, 138] studied the segmental dynamics of polymer
networks with random (nonfractal) heterogeneities based on an earlier treat-
ment by Deam and Edwards [139]. The starting point was a long flexible chain
of N segments which is randomly cross-linked instantaneously at M sites,
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which creates inhomogeneities (clustering) in the local cross-link density. In
this approach the cross-links act as constraints on the motion of the chain;
the constraints are taken into account by applying additional (localization)
harmonic potentials to the chain [137–139].

Essentially, the model under study is a GGS with additional harmonic po-
tentials; the corresponding Langevin equations of motion are given by Eq. 2,
with an external “localizing” force F(ext)

l [137, 138, 140]:

F(ext)
l (t) =

b2kBT
3

q2
0(R) Rl(t) , (146)

where b is the length of the Kuhn segment and q0(R) is the so-called localiza-
tion parameter given by [137, 138, 140]:

q0(R) ≡ q0 + δq0(R) =
6M(R)

Nb2 . (147)

The quantity M(R) = M0 + δM(R) is a cross-link distribution. In heteroge-
neous networks the cross-links are distributed nonuniformly; in other words
the cross-link distribution M(R) (as well as the localization parameter q0(R))
is spatially dependent. It is assumed that its spatially dependent term δM(R)
obeys a simple Gaussian distribution [137, 138]:

P
({δM(R)}) = N exp

[
–

1
2∆

∫
d3R δM2(R)

]
, (148)

so that

〈δM(R)〉 = 0 and 〈δM(R)δM(R′)〉 = ∆ δ(R – R′) , (149)

where ∆ is a measure of the heterogeneity of the network.
It should be emphasized that the Langevin equations in the form given

by Eqs. 2 and 146 are not simple to solve because one needs to average over
both the stochastic Brownian forces fl(t) and the random part of the localiza-
tion parameter δq0(R) (the crosslink density δM(R)). Such calculations were
performed in [137, 138] with the use of perturbation theory, taking δq0(R) as
being a small parameter. As an illustration, here we present the final expres-
sion for the mean square displacement of a network bead [137, 138]:

〈(Rl(t) – Rl(0))2〉 �
[

t/τ0

1 +
√

1 + 4∆ t2/ζ + q2
0(t/τ0)

]1/2

(150)

where, as before, τ0 = ζ/K. Using Eq. 150, one obtains different limiting be-
haviors. First of all, the usual Rouse

√
t/τ0-behavior of the mean-square

displacement of the chain segment in the absence of cross-links follows read-
ily from Eq. 150 for ∆ = 0 and q0 = 0 (compare with Eq. 68). Next, if there is
no disorder in the cross-link distribution (if ∆ = 0), a network segment still
follows the Rouse behavior at relatively short times t � τ0q–2

0 and becomes lo-
calized at longer times, 〈(Rl(t) – Rl(0))2〉 ∼ q–1

0 . This is a known result [141],
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also confirmed experimentally [47]. Finally, in a random network the het-
erogeneities enhance (on average) the localization. The disorder introduces
a new characteristic time scale τ∆ ∼ √

ζ/∆ ; for t > τ∆ a new (larger) localiza-
tion parameter is effective, namely q2

eff = q2
0 + (∆/K). Again, localization takes

place for t → ∞ [137, 138].

7.4
Polydisperse Polymer Networks: Length Distribution of Network Strands

In this section we focus on an approach originated by Sommer [142] for treat-
ing polydisperse polymer networks. Sommer considered moderately cross-
linked networks, in which the chains between cross-links are long enough to
obey Gaussian statistics but are still shorter than the average entanglement
distance. In this case the standard Rouse model can be used for treating the
dynamics of the chains. The key assumption is now the separation of time-
scales between the motions of the network chains and the motions of the
cross-link points [142]. The chains’ subsystem turns then into a set of inde-
pendently moving chains of various lengths.

Taking the cross-linking process to be stochastic and uncorrelated, one ex-
pects the distribution of cross-links to obey a Poisson form. This, in turn,
implies an exponential distribution in the length N of the chains [142]. Ex-
plicitly, the distribution is

P(N) � 1
Nc

exp
[

–
N
Nc

]
, (151)

where Nc is the average number of chain beads. Such a length distribution
was also obtained in [143] and verified through computer simulations [144].

The relaxation modulus G(N; t) of a single Rouse chain consisting of N
beads is given by Eq. 26, and its relaxation times τk(N) = τ0/λk(N) obey
Eqs. 55 and 56. In the domain of long times, G(N; t) depends mainly on the
longest relaxation time, τchain(N), see Eq. 57, and may be approximated by
G(N; t) ∼ (t/τ0)–1/2 exp(– t/τchain) [142]. The total relaxation modulus G(t) of
a polydisperse polymer network is the sum over the relaxation moduli G(t; N)
of different network chains, taken with their corresponding weights P(N) ac-
cording to Eq. 151:

G(t) �
∫

P(N)G(N; t) dt . (152)

In the domain of long times this integral can be evaluated with the use of the
saddle-point method. Finally, one has [142]:

G(t) ∼
(

τchain(Nc)
t

)1/3

exp

[
– C

(
t

τchain(Nc)

)1/3
]

, (153)
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where C is a constant and τchain(Nc) is the longest relaxation time of a Rouse
chain of length Nc. As a result, one expects from Eq. 153 the relaxation mod-
ulus to display a stretched exponential pattern with a Kohlrausch exponent
of 1/3. A rather good agreement between this theoretical expression and the
experimental data for natural rubber [145, 146] seems to hold [142]. Evi-
dently, at very long times the modes of the network will also make themselves
felt, which may change the overall picture.

7.5
Inhomogeneous Polymer Networks Consisting
of Domains of Different Sizes

In this section we consider polymer networks in which the heterogeneities
may be visualized as cross-link agglomerations; such agglomerations may
appear because of the random arrangements of cross-links. This kind of
heterogeneity is well-documented experimentally [125, 126, 147–150]. For in-
stance, dynamic and static light scattering experiments on polyacrylamide
hydrogels [150] reveal densely cross-linked regions embedded in surround-
ings with smaller cross-link densities. Below we discuss a GGS framework for
treating polymer networks that have such heterogeneities.

7.5.1
General Approach for Describing Cross-Linked Polymers
Consisting of Cross-Link Agglomerations

To address the existence of cross-link agglomerations in polymer networks
and gels, the following simple model was proposed [151]. An inhomogeneous
cross-linked polymer is treated as an ensemble of regions (domains) with
finite sizes, see Fig. 16. Two assumptions here are that (i) the domains are
independent (they do not interact with each other), and (ii) the internal topo-
logical structures of all the domains are identical. Each domain is taken now
to be a GGS, consisting of beads connected by elastic springs in an arbitrary

Fig. 16 Sketch of a heterogeneous polymer network consisting of domains (cross-link
agglomerations) of different sizes
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way (but the same for all of the domains). The detailed structure inside the
domains may be a mesh-like network, a fractal network, a dendritic struc-
ture, and so on. The only difference between the domains is the numbers
Nu of relaxing units inside each domain, the number density of the relaxing
units νu being the same for all of the domains. Note that Nu is not necessarily
the number of beads in the GGS; relaxing units, in general, can contain sev-
eral GGS-beads like, say, elementary cells of mesh-like networks. Thus, in the
present model the disorder associated with the randomness of cross-linking
is reduced to a broad size distribution of the domains in the network.

First, we focus on the relaxation inside a single domain of finite size; to get
the dynamical behavior of the whole heterogeneous network one needs then
to average over all of the domains in the system. The shear dynamic mod-
ulus G∗(ω) (and, correspondingly, the relaxation modulus G(t)) of polymer
networks and gels often shows a power law behavior (especially at the sol-gel
transition), see [101, 102, 152–154] and also Sect. 6. Therefore, we consider
here a class of GGS-domains for which the relaxation modulus G(Nu; t) obeys
this power law behavior in the region of internal, “intra-domain” relaxation:

[G(Nu; t)] �
(

t
τu

)–γ

. (154)

Here [G(Nu; t)] is the reduced relaxation modulus of a domain (divided by
νukBT, where νu is the number density of relaxing units), γ is a positive con-
stant, γ > 0, and τu is the characteristic relaxation time of a relaxing unit,
which is assumed to be the same for all of the domains.

As was pointed out in Sect. 3.1, the mechanical relaxation is characterized
by the relaxation spectrum H(τ) which is connected to [G(Nu; t)] through
Eq. 27. If [G(Nu; t)] scales as given by Eq. 154, the corresponding relaxation
spectrum H(Nu; τ) also follows a scaling behavior [3, 151, 155]:

H(Nu; τ) � γ

(
τ

τchar

)–γ

. (155)

Since the domains are finite, they can be characterized by their maximal
relaxation times τmax(Nu), which depend on the number of relaxing units
Nu inside them. It is a straightforward matter to demonstrate, using Eqs.
155 and 29, that as long as the power law behavior of [G(Nu; t)] holds in-
side the domain (t < τmax(Nu)), the relaxation times can be represented
as τ(ξ) � τu(Nu/ξ)1/γ , where ξ is a continuous variable ξ , see Sect. 3.1.2
and [151]. Therefore, for τmax(Nu) one immediately has (ξ = 1):

τmax(Nu) � τuNα
u (156)

with α = 1/γ . Note that α > 0, since τmax(Nu) increases as the size of the do-
mains increases. At times exceeding τmax(Nu) one has an exponential decay of



Generalized Gaussian Structures 233

the relaxation modulus [G(Nu; t)] of a domain of finite size [151]:

[G(Nu; t)] � 1
Nu

(
τmax(Nu)

t

)
exp

(
–

t
τmax(Nu)

)
. (157)

In other words, at t > τmax(Nu) the relaxation modulus of the domain is
mainly governed by the maximal relaxation time τmax(Nu) which, in turn, is
defined by the number of relaxing units inside the domain, see Eq. 156.

Now, to obtain the relaxation modulus of the whole heterogeneous net-
work one has to average over all of the domains, in a similar way to the
previous section, see Eq. 152. To proceed, one has to assume a distribution
for the domain sizes; we let this distribution P(Nu) have the rather general
form [151]:

P(Nu) � Nσ
u exp

[
– C

(
Nu

Nd

)δ ]
, (158)

where δ and σ are parameters (δ > 0), Nd is the number of relaxing units in
a domain of average size, and C is a constant. Performing now the averaging
with respect to the distribution function P(Nu) and focusing on long times
(therefore, assuming that the main contribution comes from the terminal re-
laxation of each domain, see Eq. 157), we finally end up with the following
asymptotic expression for the relaxation modulus [G(t)] of the heterogeneous
network [151]:

[G(t)] � 1
Nd

(
t
τd

)(σ–3δ/2)/(α+δ)

exp
[

– C′
(

t
τd

)δ/(α+δ) ]
, (159)

where C′ is a constant and

τd � τmax(Nd) = τuNα
d , (160)

see Eq. 156 for Nu = Nd. Thus, Eq. 159 indicates that the [G(t)] of inhomo-
geneous polymer networks formed by non-interacting domains of different
sizes decays at long times, t  τd, following a stretched exponential pattern
whose exponent is δ/(α + δ). This exponent ranges between 0 and 1 for all
positive values of δ and α. Note that mathematically this nonexponential be-
havior arises from the averaging with respect to the distribution, Eq. 158;
it has the same mathematical origin as Eq. 153 discussed in the previous sec-
tion for polydisperse polymer networks [142]. Stretched exponential forms
were also reported in several studies which dealt with the free-volume theory
of glassy relaxation [156], with the electric birefringence in dilute solutions of
polyelectrolytes [157], with trapping processes [158, 159], and so on.

A concrete form of the distribution P(Nu), Eq. 158 – in other words values
for the parameters δ and σ – may be determined based on physical argu-
ments. For instance, the distribution of chain lengths in polydisperse polymer
networks was shown to have a Poisson form [142], see Eq. 151 of the previ-
ous section. Therefore, one has in this case δ = 1 in Eq. 158 and also α = 2,
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since now each domain is just a single Rouse chain, see Eq. 156. This leads im-
mediately to a stretched exponential behavior with index δ/(α + δ) = 1/3, so
that we reproduce Sommer’s result [142], Eq. 153. We note that a power-law
prefactor Nσ

u in the distribution function P(Nu), Eq. 158, influences only the
power-law preexponential term in Eq. 159. Given that the asymptotic behav-
ior of [G(t)] is governed mainly by the stretched exponential term, we skip the
power-law terms of Eqs. 158 and 159 in the examples that we provide below.

7.5.2
Mesh-Like Inhomogeneous Polymer Networks

We start by choosing for the domains of Fig. 16 topologically-cubic networks
built from Gaussian springs [151, 160], see Sect. 5.1.1. The relaxation spec-
trum H(τ) of such domains obeys a τ3/2 behavior, see [24, 30, 62–65] and
also Sect. 5.1.1. According to Eq. 156, each such domain containing Nu cross-
links has a maximal relaxation time τmax � τ0N2/3

u ; in other words, here we
have α = 2/3. For P(Nu), see Eq. 158, an analog of the Poisson distribution of
Eq. 151, namely P(Nu) ∼ exp[– (Nu/Nd)] is used [151, 160]. We recall that this
distribution corresponds to random and uncorrelated cross-linking. Thus, in
this case δ = 1, and from Eq. 159 one has for the relaxation modulus G(t) of
the 3-D heterogeneous mesh-like network as a whole [151, 160]:

[G(t)] ∼ exp

[
– C′

(
t
τd

)3/5
]

. (161)

Besides 3-D heterogeneous networks, it is also interesting to consider their
two-dimensional analogs. For this we take as domains the topologically-
square networks studied in Sect. 5.1.2. It is then straightforward to demon-
strate that the parameter α in Eq. 156 is equal to 1, since H(τ) follows a 1/τ
behavior [65, 68–70, 151]. Furthermore, in order to average over the domains
one can use here the same form for P(Nu) as that employed above for the
3-D networks, with δ = 1. As a result, the relaxation modulus [G(t)] of the
heterogeneous 2-D network has the following long-time behavior [151]:

[G(t)] ∼ exp
[

– C′
(

t
τd

)1/2 ]
. (162)

This is another example of a stretched exponential behavior at long times. In
principle, one can apply the same calculations to any network built from do-
mains of arbitrary internal architecture, as long as the relaxation spectrum
inside the domains obeys a power-law form, see Eq. 155. For instance, the net-
works may belong to any type of regular lattice topology (bcc, fcc, tetrahedral,
triangular, hexagonal) or even be fractal structures.
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7.5.3
Inhomogeneously Cross-Linked Polymeric Gels

In this section we apply the above approach to inhomogeneous polymeric
gels which display random cross-link agglomerations. In Sect. 6.2 we pointed
out that the shear modulus of gels often displays a power law decay and that
this behavior can be well reproduced by the ladder model [100]. Therefore,
here we employ the ladder model, see Fig. 10, for the internal structure of
the domains. We are interested in units of finite size, so that the ladder ends
either with a spring or with a Maxwell element (a spring and a dashpot in
series) [100]. We use here ladders with Maxwell elements as final elements
(pre-gel regime), since in this case the condition that different domains relax
independently is easier to justify: this corresponds to cross-link agglomera-
tions (domains) inserted into a more dilute environment.

As was discussed in Sect. 6.2, the complex shear modulus G∗(ω) of the
simplest ladder model follows a ω1/2 behavior [100], so Eq. 156 gives us
τmax � τladN2

u (so α = 2). Note that the same dependence of τmax on the size
of a ladder network was also proved numerically [100]. Therefore, using
a Poisson-type distribution, P(Nu) ∼ exp[– (Nu/Nd)] and setting δ = 1, one
has from Eq. 159 [151]:

[G(t)] ∼ exp

[
– C′

(
t
τd

)1/3
]

. (163)

Thus, we again find for inhomogeneously cross-linked gels a stretched expo-
nential decay of the relaxation modulus G(t) on scales larger than the average
size of the structural inhomogeneities (cross-link agglomerations). Remark-
ably, the stretched exponential index here, 1/3, coincides with that found by
Sommer for polydisperse polymer networks [142], see Sect. 7.4. This is an ex-
pected result, since a ladder model is equivalent to a linear Rouse chain, see
Sect. 6.2.

Furthermore, the above treatment can be easily extended to a more
general situation when the internal structure of the domains is given by
ladder models for which the shear modulus G∗(ω) follows a ωβ-behavior
with 0 < β < 1 inside the domains, see Eq. 132 of Sect. 6.2. In this case
τmax � τladN1/β

u (so α = 1/β), and using a Poisson distribution with δ = 1 leads
to (see Eq. 159):

[G(t)] ∼ exp
[

– C′
(

t
τd

)β/(1+β) ]
. (164)

Thus, the microscopic (intra-domain) power-law behavior of the relaxation
modulus of inhomogeneous gels, [G(t)] ∼ t–β with 0 < β < 1, is replaced on
much larger scales by a stretched exponential decay, Eq. 164. Note that Eq. 163
follows from Eq. 164 for β = 1/2.
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As regards applications, a recent study [161, 162] of the stress relaxation in
near-critical gels (where the same long-time relaxation behavior of gels was
derived on the basis of quite different considerations) is of particular interest.
As a model for polymeric gels, the authors considered a system consisting of
N vertices (monomers in the context of gelation) which were randomly con-
nected by means of cN edges (cross-links), where c is the concentration of
cross-links. A pre-gel situation was considered (c < ccrit where ccrit is the crit-
ical concentration at the percolation transition). Then a given realization of
the system can be decomposed into finite connected components (clusters).
The density of eigenvalues for such a system was calculated analytically in the
mean-field approximation. It was found [161, 162] that the eigenvalue density
shows a Lifshits tail for small eigenvalues, giving rise to a stretched exponen-
tial decay for the relaxation modulus at very long times, exp[– (t/τ∗)1/3].

8
Dendritic Polymers

8.1
Tree-Like Networks

8.1.1
Tree-Like Gaussian Structures

In this section we focus on the dynamics of tree-like polymer networks [11,
163, 164]; these have no closed loops, which makes them simpler than usual
networks with mesh-like topologies, see Sect. 5. There were several early stud-
ies of the dynamics of tree-like structures built from elastic Gaussian springs.
For instance, Chompff treated small tree-like structures [163] (“branched
stars” according to his terminology) using the decoupling procedure, see
also [165] and Sect. 5.2.2. Ronca determined the dynamical structure factor
for tree-like networks [166]. A comprehensive treatment of tree-like Gaussian
networks was performed by Graessley [11], whose work we outline below.

Graessley analyzed the equilibrium and the dynamical properties of poly-
mers based on small, tree-like micronetworks [11, 167, 168]. These Gaus-
sian micronetworks represent perfectly branched, symmetrical GGS, which
grow from a central bead, see a particular example in Fig. 17; the micronet-
works are finite Cayley trees (dendrimers). The peripheral beads of these
micronetworks are assumed to be fixed in space. When calculating the quasi-
equilibrium elastic properties, the peripheral beads are taken to move affinely
with the macroscopic deformations [167, 168]. The evaluation of the relax-
ation spectrum H(τ) and of the relaxation modulus G(t) is done in two steps.
First, the spectrum of an ensemble of isolated tree-like micronetworks with
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Fig. 17 A tree-like Gaussian micronetwork of third order, J = 3, which is built from tri-
functional beads, f = 3

fixed peripheral beads is computed; then the contribution associated with
the relaxation of the beads which are remote from the periphery is deter-
mined [11].

A single tree-like Gaussian micronetwork is built, following the GGS pro-
cedure, from beads with friction constant ζ which are connected by springs
with elasticity constant K, see Fig. 17. All beads have the same functionality f
and J denotes the order of the tree; the peripheral beads are attached to im-
mobile points, fixed in space. Graessley determines the relaxation spectrum
of these micronetworks by analytical steps, aiming at diagonalizing the cor-
responding connectivity matrices A, see Eq. 2. The diagonalization is based
on the successive partitioning of the determinant of (A – λI) and leads to the
following characteristic equation [11]:

Cf [( f –1)J–2]
1 ·Cf [( f –1)J–3]

2 · · · Cf
J–1 ·

[
CJ –

1
( f – 1)CJ–2

]
= 0 . (165)

Here the Cm( f , λ) are defined iteratively as follows:

C1( f , λ) = f – λ

and

Cm( f , λ) = f – λ –
f – 1

Cm–1( f , λ)
. (166)

Hence the Cm( f , λ) have the structure of continued fractions. Then, in the
limit of large J, the relaxation modulus G(t) of the micronetwork ensemble is
given by (we omit here the constant equilibrium modulus Ge) [11]:

G(t) = MkBT
f ( f – 2)

f – 1

J–2∑

m=1

( f – 1)J–1–m
m∑

r=1

exp
[

–
2t

τm(r)

]
, (167)
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where M is the number of micronetworks per unit volume. In Eq. 167 the
relaxation times τm(r) are, as before, related to the eigenvalues through
τm(r) = τ0/λm(r), see also Eq. 76, and, as usual, τ0 = ζ/K. The eigenvalues
λm(r) of the connectivity matrix A of the tree-like micronetwork are the roots
of Eq. 165 and are found to fulfill [11]:

λm(r) = f – 2
√

f – 1 cos
πr

m + 1
, with r = 1, ..., m . (168)

Following Graessley, the relaxation modulus of a macroscopic network is
associated with contributions to the modulus from beads which are remote
from the periphery [11]. Now, the sum over m in G(t), Eq. 167, is related
to the beads which are at a distance of m strands from the fixed periph-
eral beads [11]. Therefore, the contributions from beads remote from the
periphery are related to terms in Eq. 168 with m large. Thus, to determine
the relaxation times of the macroscopic network, it is enough to consider
the limiting contribution, m → ∞; this implies a continuous set of relaxation
times [11]:

τ(ξ) � τ0

f – 2
√

f – 1 cos πξ
, (169)

where 0 < ξ < 1, see also Sect. 3.1.2. Now, the relaxation spectrum H(τ) of
the macroscopic network can be calculated with the use of Eq. 29; finally, one
finds [11]:

H(τ) � νkBT
1

2π
√

f – 1

τ0/τ√
1 – 1

4( f –1) ( f – τ0/τ)2
, (170)

where ν is the number of beads per unit volume. In turn, the relaxation mod-
ulus G(t) reads [11]:

G(t) � νkBT exp[– 2ft/τ0] I0
[
4
√

f – 1 t/τ0
]

, (171)

where I0[x] stands for the modified Bessel function of order zero [11].
Equation 169 implies that the relaxation spectrum ranges from τmin =

τ0/( f + 2
√

f – 1 ) to the maximal relaxation time

τmax =
τ0

f – 2
√

f – 1
. (172)

Note that Eq. 168 correctly reproduces the limiting case f = 2 corresponding
to the standard Rouse chain, see Eq. 55. On the other hand, Eq. 172 has to be
viewed with care for f = 2. Furthermore, due to the limit m → ∞, τmax does
not depend on the network’s size (on J). Moreover, the width of the relaxation
spectrum is characterized by the ratio 〈τ2〉/〈τ〉2, which is found to be equal
to f /( f – 2) [11]. This means that the spectrum gets narrower with increasing
f . Thus, the relaxation spectrum of the tree-like network built from Gaussian
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springs is rather narrow and is limited by the longest relaxation time τmax,
Eq. 172, which does not depend on the network’s size.

8.1.2
Tree-Like Networks Built from Rouse Chains

A decade later, Graessley’s model of tree-like networks was extended by
Kloczkowski et al [12, 169], mainly by replacing the bonds between the beads
by Rouse chains. In [12, 169] the tree grows from a central chain, see Fig. 18
(not from a central bead, as in Graessley’s case). Here, the branching points
(junctions) are connected by means of Rouse chains; each chain consists of
(n – 1) beads each with friction constant ζ and n elastic springs each with
elasticity constant K. Again, the two-step approach of Graessley [11] is used
to compute the relaxation spectrum of the network. First, one calculates the
spectrum of a tree-like micronetwork with fixed periphery, which is char-
acterized by the functionality f of junctions (branching points) and by the
number of tiers J. Then, one determines the part of the spectrum related to
the motion of beads far away from the fixed points.

In solving the eigenvalue problem, use is made of the symmetry of the tree-
like structure [12, 169, 170]. The system’s symmetry reduces the characteristic
equation for the eigenvalues of the connectivity matrix A, det(A – λI) = 0,
to the product of determinants of submatrices corresponding to subsequent
generations (tiers). The characteristic equation which defines the eigenvalues
λ is then [12]:

A
mJ
1 ·A

mJ–1
2 · · · Am2

J–1(A2
J – 1) = 0 . (173)

Here ml = 2( f – 1)l–1 with 2 ≤ l ≤ J and

Ak = akUn–1(1 – λ/2) – Un–2(1 – λ/2), 1 ≤ k ≤ J , (174)

Fig. 18 Sketch of a tetrafunctional ( f = 4) tree-like micronetwork built from Rouse chains.
The network consists of two tiers of chains; each Rouse chain between tetrafunctional
branching points has three springs (n = 3)



240 A.A. Gurtovenko · A. Blumen

where Un(x) = sin[(n + 1)x]/ sin(arccos x) are the Chebyshev polynomials of
the second kind [171] and the coefficients ak satisfy the recurrence relation

ak = f – λ –
( f – 1)[ak–1Un–2(1 – λ/2) – Un–3(1 – λ/2)]

ak–1Un–1(1 – λ/2) – Un–2(1 – λ/2)
, (175)

for 2 ≤ k ≤ J, with a1 = ( f – λ).
From the characteristic equation, Eq. 173, one obtains the following

(rather involved) equations for the eigenvalues λ [12]:

Uk
(
F(1 – λ/2)

)
+

√
f – 1 Un–2(1 – λ/2)Uk–1

(
F(1 – λ/2)

)
= 0 (176)

for 1 ≤ k ≤ (J – 1) and
[

Uk
(
F(1 – λ/2)

)
+

√
f – 1 Un–1

(
1 – λ/2

)
Uk–1

(
F(1 – λ/2)

)

Uk–1
(
F(1 – λ/2)

)
+

√
f – 1 Un–1

(
1 – λ/2

)
Uk–2

(
F(1 – λ/2)

)
]2

=
1

f – 1
(177)

for k = J, where the function F(x) is given by:

F(x) =
Un(x) + ( f – 2)Un–1(x) – ( f – 1)Un–2(x)

2
√

f – 1
. (178)

By then applying Graessley’s procedure, the authors [12] extract the contri-
bution to the spectrum from beads far away from the periphery in the limit
when the number of tiers J goes to infinity. They show that a solution of the
eigenvalue problem, see Eqs. 176 and 177, can be obtained in the limit k → ∞
from [12]

F
(

1 –
λ

2

)
= cos

πr
k + 1

, with r = 1, ..., k , (179)

where F(x) is given by Eq. 178. This simplified equation is then solved analyt-
ically in the cases that n = 1 or that n = 2. When n = 1 (a single spring between
the branching points, see the previous section) one recovers Graessley’s solu-
tion [11], see Eq. 168. For n > 2 the eigenvalues λ can be found numerically
from Eqs. 179 and Eq. 178. It turns out, however, that the relaxation spectrum
H(τ) (the distribution function of relaxation times τ) can be obtained with-
out the numerical solution of Eq. 179. As discussed above, one can introduce
a continuous variable ξ = r/(k + 1) (0 < ξ < 1), see Eq. 179; H(τ) is calculated
then using Eq. 29 [12], obtaining:

H(τ) =
νkBTτ0

2πτ

F′(x)√
1 – F2(x)

, (180)

where τ0 = ζ/K, ν is the number of beads per unit volume, F(x) is given by
Eq. 178, F′(x) denotes the derivative (d/dx)F(x), and

x = 1 –
λ

2
= 1 –

τ0

2τ
. (181)
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Now, making use of Eqs. 27 and 180, one has for the relaxation modulus
G(t) [12]:

G(t) = νkBT exp[– 4t/τ0]
1
π

1∫

–∞
dx

F′(x)√
1 – F2(x)

exp[4tx/τ0] . (182)

Analysis of Eq. 180 shows that H(τ) consists of continuous bands of relax-
ation times; the number of bands increases with n, in other words with the
length of the Rouse chains between the branching points [12]. To be noted is
that in logarithmic scales in an intermediate regime the bands of H(τ) show
an almost linear behavior with slope 1/2 as a function of τ ; the Rouse chains
between branching points seem to be responsible for this behavior. Also, it is
shown in [12] that the maximal relaxation time τmax of the whole relaxation
spectrum is approximately given by

τmax � τ0
n(nf – f + 2)

2( f – 2
√

f – 1 )
. (183)

For the special case n = 1, Eq. 183 recovers Graessley’s result, Eq. 172. For
quite long chains, n  1, the maximal relaxation time τmax goes as n2τ0,
which leads to a considerable broadening of the relaxation spectrum in the
domain of short times, a fact due to the inclusion of the chains between the
branching points. Thus, for tree-like networks the relaxation spectrum turns
out to be broader than in Graessley’s model of the previous section.

However, this change does not affect the long-time regime, determined by
the relaxation of the whole network. Indeed, one can easily connect τmax with
the maximal relaxation time τCG

max, Eq. 172, of Graessley’s structure, viewed
as being a coarse-grained model. Here “CG” stands for “coarse-grained”, by
which we imply, as in Sect. 5, that the Rouse chains between branching points
are replaced by single elastic springs each with elasticity constant KCG � K/n,
and that a coarse-grained bead (junction) accumulates the overall friction of
half of each chain directly attached to it; in other words that ζCG � f (n/2)ζ ;
then the characteristic times of both models, τ0 and τCG, are related as fol-
lows:

τCG � fn2

2
τ0 . (184)

Taking Eq. 183 for large n, inserting Eq. 184 into it and recalling Eq. 172 leads
to:

τmax � τ0
n2f

2( f – 2
√

f – 1 )
� τCG

1

f – 2
√

f – 1
= τCG

max . (185)

In other words, the maximal relaxation times of both models coincide. As al-
ready observed, these times do not depend on the size of the network (on J).
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Moreover, in both models the relaxation spectrum is quite narrow. The rea-
son for this behavior is that in both models the peripheral beads are kept
fixed; this prevents big network portions from moving with respect to each
other and, therefore, eliminates the very low-frequency modes. Furthermore,
letting the number of tiers J go to the limit J → ∞ is also questionable; a per-
fect tree with f > 2 cannot grow indefinitely in 3-D because the number of
monomers increases exponentially with J.

8.2
Trifunctional Dendrimers

Recently, interest in polymers with perfect tree-like topologies was en-
hanced by developments in the synthesis of regular branched structures
(dendrimers). Dendrimers are macromolecules that have regularly branched
architectures [172–175]. They display a series of unique properties, which are
well characterized by their generation number g; their applications are broad
and range from serving as building blocks for constructing complex polymer
materials with new architectures to their use as novel non-viral vectors for
drug and gene delivery.

Several works have been devoted to the theoretical studies of the equilib-
rium and dynamic properties of dendrimers [13, 33, 176–184]. These studies
were complemented by computer simulations [185–191]. In most studies tri-
functional dendrimers were considered (the functionality of the branching
points was taken to be three, f = 3). The reason for this is two-fold. First,
f = 3 holds for polyamidoamine [172] and polyether [173] dendrimers, which
were extensively studied experimentally. Second, the number of monomers in
a dendrimer increases exponentially with the generation number g, and, for
a given g the increase depends on f . Therefore, larger f mean much larger
dendritic systems at the same g. This leads to larger connectivity matrices
within the GGS (Rouse-Zimm) formalism and to more densely packed struc-
tures when Monte Carlo or molecular dynamics simulations are used.

Now, in a GGS approach one has to determine the eigenvalues of the
connectivity matrix A of the dendrimer. Most work centered then on the
direct diagonalization of A with the use of analytical [179] or numeri-
cal methods [13, 33, 180]. In this respect, the theoretical study of Cai and
Chen [179] is of particular interest. They considered the GGS dynamics of tri-
functional dendrimers built from beads (each having a friction constant ζ)
and springs (each having an elasticity constant K). The model is certainly ap-
propriate when viewing it as arising from a dendrimer structure consisting
of flexible, long spacers. We note that many dendrimers with several spacers
between the branching points were synthesized. On the other hand, the GGS
approach is an approximation when the inter-bead bonds are stiff or when,
due to density, other interactions may enter the picture.
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In general, it has to be emphasized that many interactions may become
important for the dynamics of dendrimers, depending on their geometri-
cal features and on the dendrimers’ concentration in solution. For instance,
excluded volume interactions play a fundamental role when the dendritic
structure is densely packed, as is the case for covalently-bound dendritic
(Cayley) trees without spacers. For such molecules one cannot even de-
fine a θ-temperature at which the dendrimer would behave in a quasi-ideal
(Gaussian) fashion. The reason is that to compensate the three-body repul-
sions which increase with increasing density (with increasing g), one has to
decrease the supposed θ-temperature in order to render the two-body at-
tractions stronger [182, 191–193]. This compensation, however, cannot be
achieved fully. On the other hand, the hydrodynamic interactions turn out to
be important for dilute solutions of dendrimers; in contrast to linear chains,
however, the pre-averaging techniques have to be used with care [194]. For in-
stance, important features of dendrimer solutions such as the non-monotonic
dependence of the zero-shear rate viscosity of dendrimers on the gener-
ation number can be only observed when the hydrodynamic interactions are
explicitly taken into account [190]. With increasing concentration the hydro-
dynamic interactions are getting screened and the GGS approximation seems
to be acceptable as long as the dendrimer density (the number of generations)
does not get quite high. We note that since the strands between the branch-
ing points of dendrimers are as a rule rather short, entanglement effects in
dendrimers can in general be neglected [195].

Cai and Chen attacked the problem through a direct analytical diagonal-
ization of the connectivity matrix of trifunctional dendrimers and gave a very
clear physical interpretation for the normal modes and relaxation times en-
countered [179]. In particular, they found that the normal modes can be
categorized into two general groups: (i) normal modes involving bead mo-
tions with a mobile central monomer (which is also called core) and (ii) nor-
mal modes involving motions with an immobile core [179]. In the linear
viscoelasticity framework of our review, any displacement of the dendrimer
beads can be formulated as a linear combination of these normal modes.
A trifunctional dendrimer of generation g consists of

Ntot = 3(2g – 1) + 1 (186)

beads. Note that g differs here from J, the order of a tree in Graessley’s model,
see Sect. 8.1.1; one has g = ( J – 1). As before, the displacement of the den-
drimer as a whole is determined by the vanishing eigenvalue λ = 0. For the
other (Ntot – 1) non-vanishing eigenvalues Cai and Chen find implicit an-
alytical expressions, based on the underlying dendrimer symmetry [179].
Compared to the work reported in the last two sections, these equations are
more transparent, since they involve trigonometric and hyperbolic functions
only.
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It turns out that exactly g nonvanishing eigenvalues of the first group
(modes involving a mobile core) exist, which can be found by solving the
following equation [179]:

2
[

sin(g + 2)χ –
√

2 sin(g + 1)χ
]

= sin gχ –
√

2 sin(g – 1)χ , (187)

where χ is given by

χ = arccos
[

(3 – λ)/2
√

2
]

, (188)

with 0 < χ < π. All g eigenvalues of this group lie in the range (3 – 2
√

2,
3 + 2

√
2). Since significant contributions to several various dynamical quan-

tities come from the smallest eigenvalues, these eigenvalues are of particular
interest and importance. For large dendrimers, g  1, the smallest eigenvalue
λ

(1)
min involving the motion of the core is approximately [179]:

λ(1)
min � 3 – 2

√
2 cos(π/g) , (189)

very close to (3 – 2
√

2) for large g.
The second group of normal modes (for an immobile core) involves beads

belonging to two subbranches which stem from a common root (branch-
ing point). The motions may involve displacements of rather large parts of
the molecule with respect to each other; such parts may be either the main
branches themselves or smaller subbranches. All in all, there are g subgroups
within this group, in which the central bead (core) stays immobile. A specific
feature of this group of normal modes is their degeneracy. In the case when
the main branches move as a whole with respect to each other, the degener-
acy equals 2; it increases when larger and larger parts of the dendrimer stay
immobile. The smallest eigenvalue λ

(2)
min of this group of normal modes fulfills

the relation [179]:

sinh(g + 1)χ =
√

2 sinh gχ , (190)

with

χ = ln
[

1

2
√

2

(
3 – λ +

√
1 – 6λ + λ2

)]
, χ > 0 . (191)

For large g one has approximately [179]:

λ(2)
min � 2–(g+1) . (192)

One may note this important result; for a freely floating dendrimer the small-
est eigenvalue depends exponentially on the generation number (on the den-
drimer’s size).

Using Eqs. 189 and 192, one can now compare the corresponding maxi-
mal relaxation times τmax = τ0/λmin, where τ0 = ζ/K, stemming from the two
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different groups of eigenmodes. One has:

τ (1)
max � τ0

3 – 2
√

2
(193)

and

τ (2)
max � τ0 2(g+1) . (194)

Note that the maximal relaxation time τ
(1)
max of the first group, Eq. 193, does

not depend on the dendrimer’s size and coincides with the maximal re-
laxation time of Graessley’s coarse-grained tree-like network with a fixed
periphery, see Eq. 172. In contrast, the maximal relaxation time of the sec-
ond group, τ

(2)
max, increases exponentially with the number of generations. It

often represents the longest relaxation time of the dendrimer as a whole, be-
cause, for large g, it significantly exceeds τ

(1)
max. As a side remark, we note

that the underlying physical reason for the extremely narrow relaxation spec-
trum of a tree-like network with fixed peripheral beads is due to the fact
that its immobile periphery prevents the motion of whole (sub)branches
relative to each other and the related appearance of the corresponding size-
dependent eigenmodes. From Eq. 186 it is evident that the longest relaxation
time is proportional to the total number of beads, Ntot, of the dendrimer, so
τ

(2)
max � τ0Ntot. Therefore, the longest relaxation time of a dendrimer is smaller

than that of a linear chain (τchain) of the same molecular weight (see Eq. 57),
but much larger than that of a chain consisting of g beads [179].

The dynamic properties of trifunctional dendrimers were studied in [13,
33] by numerically diagonalizing the connectivity matrices of dendrimers
with g ranging from g = 3 to g = 9. Excellent agreement was found be-
tween the eigenvalues determined in this way and those obtained using
the analytical procedure of Cai and Chen [179]. The eigenvalues were then
used to calculate the displacements of monomers under external forces and
also the dynamic shear modulus, see Sect. 3. Remarkably, no power-law be-
havior (no scaling) was found in the domain of intermediate frequencies
(times) [13, 33]. This is in contrast to the behavior of linear polymer chains,
of topologically-regular and of mesh-like and fractal networks. Instead, for
dendrimers one sees a nearly logarithmic behavior in the double logarith-
mic plots of G′(ω), G′′(ω), and 〈〈Y(t)〉〉. This fact appears as the signature of
the exponential growth of the dendrimer [13, 33]. In particular, the storage
modulus [G′(ω)] at intermediate frequencies can be well described through
[G′(ω)] ∼ (1 + ln(ωτ0)), which is clearly different from the (ωτ0)1/2-behavior
typical of Rouse chains.



246 A.A. Gurtovenko · A. Blumen

8.3
Generalized Dendrimers

Apart from the trifunctional dendrimers considered above, more general
structures are possible. The functionality of the inner branching points, the
functionality of the core (central monomer), and the number of spacers may
vary [74, 180, 184, 196]. We consider first the basic dendrimer topology (a sin-
gle spring between branching points), and introduce a generalized dendrimer
(GD), characterized by the functionality of the core, fc, by the functionality
of the other inner branching points, f , and by the number of generations, g,
see an example in Fig. 19 [74]. Such a GD represents a wide class of dendritic
structures, which include among others the “classical” dendrimers (fc = f )
and the dendritic wedges [78] (fc = ( f – 1)). Furthermore, star polymers are
GD with f = 2 and fc arbitrary, the latter being just the number of arms of the
star.

We recall that for large GGS (and for dendrimers in particular) the nu-
merical diagonalization methods are extremely time-consuming; today’s rea-
sonable limit (in terms of computer time and accuracy) is Ntot � 104, given
that all of the eigenvalues are needed. Also, the direct analytical diagonaliza-
tion of the connectivity matrix of the GD (in line with the methods discussed
in the previous section) is rather cumbersome. Fortunately, it turns out that
it is possible to get all of the GD eigenvalues and eigenfunctions in a more
analytically-minded way, without going into a detailed analytical matrix di-
agonalization [74]. The idea, as in the case of topologically-regular mesh-like
networks, see Sect. 5, is to use a judicious analytical form for the eigenmodes,
which then serves as an ansatz to simplify the equations. The method which
we display below was first developed for classical dendrimers [196] (for them
f = fc, so all the beads have the same functionality), and then applied to

Fig. 19 Example of a generalized dendrimer of third generation, g = 3. The functional-
ity of the core, fc and the functionality of the inner beads, f , differ and equal 4 and 3,
respectively
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dendritic wedges [78] (a wedge has one main branch less than the classical
dendrimer).

In order to solve (as far as possible analytically) the eigenvalue problem,
it is important to focus on the underlying topological symmetry of the GD.
Taking this symmetry into account at a very early stage significantly simplifies
the procedure. The classification of the normal modes, originally proposed by
Cai and Chen for trifunctional dendrimers [179], can be naturally extended to
GD. The eigenmodes of the GD belong, as before, to two general classes: class
(i) involves normal modes in which the core is mobile, class (ii) consists of
normal modes with an immobile core. That this assumption is correct is veri-
fied a posteriori, by counting all of the independent modes determined in this
way. We continue by displaying the analytical approach and the main results.

A generalized dendrimer characterized by fc, f , and g consists of

Nd = fc
( f – 1)g – 1

f – 2
+ 1 (195)

beads for f ≥ 3 and of

Nd = ( fcg + 1) (196)

beads for f = 2. When the core is mobile, the motion of the GD may involve
all of its beads. The Langevin equations for the inner GD beads, Eq. 2, can be
rewritten as [74]:

ζ
dRj,m(t)

dt
+ K

[
f Rj,m(t) – Rj–1,n(t) –

f –1∑

l=1

Rj+1,l(t)
]

= 0 , (197)

using the fact that each inner bead is connected to one bead from the previ-
ous and to ( f – 1) beads from the next generation. Here, for simplicity’s sake,
the stochastic force f (t) was excluded (say, by thermally averaging over the
external fluctuations), since at this stage we are interested only in linear rela-
tions involving the normal modes, and thus the averaging can be performed
at every stage in the calculations. In Eq. 197 Rj,m(t) is the position vector of
the mth bead of the inner generation j, where 0 < j < g and j = 0 corresponds
to the core.

In order to simplify the picture we assume the following structure for the
solutions [74, 78]:

Rj,m(t) =
∑

k

CkΠk( j, m) exp[– λkt/τ0] , (198)

where τ0 = ζ/K, the Ck are j-independent constants, and λk and Πk( j, m) are
the eigenvalues and eigenfunctions, respectively. Equation 198 may be viewed
as being a normal mode transformation, such as Eq. 9. To proceed, we use the
following observation: the normal modes can be characterized by motions
involving one root bead (branching point) and all its descendants of higher
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generations. For such a subwedge that has the root as its ancestor, beads that
belong to the same generation move in the same manner [74, 78, 196]. Thus,
if the GD core moves, (in other words the core is the root), one has

Πk( j, m) = Πk( j) (199)

for all of the beads of generation j, see also Fig. 3 in [179]. Now, using Eqs. 198
and 199, the Langevin equation, Eq. 197, gets simplified to

(– λk)Πk( j) +
[

f Πk( j) – Πk( j – 1) – ( f – 1)Πk( j + 1)
]

= 0 . (200)

One immediately obtains Πk( j) = const as a solution of Eq. 200; its eigenvalue
λ1 = 0 is related to the displacement of the dendrimer as a whole, under the
influence of fluctuating forces. In the same fashion one can also simplify the
boundary conditions – the equations of motion for the core, j = 0, and for
the peripheral beads, j = g. In so doing, the eigenvalue problem for the nor-
mal modes of class (i) is readily solved. We outline the final results and refer
to [74, 78] for the details.

The eigenvalues λk and the eigenfunctions Πk( j) corresponding to normal
modes with a mobile core (class (i)) read [74]:

λk = f – 2
√

f – 1 cos ψk (201)

and

Πk( j) =
{

( f – 1) sin
[
( j + 1)ψk

]
+ ( fc – f )

√
f – 1 sin

(
jψk

)
(202)

+ ( f – fc – 1) sin
[
( j – 1)ψk

]}
( f – 1)–j/2 ,

where the ψk are fixed by

sin
[
(g + 1)ψk

]
=

f – fc – 1√
f – 1

sin
(
gψk

)
. (203)

Interestingly, as long as the inequality (g + 1)/g > |f – fc – 1|/√f – 1 holds,
Eq. 201 gives g distinct solutions.

In contrast, when (g + 1)/g ≤ |f – fc – 1|/√f – 1 , only (g – 1) modes (spa-
tially periodic) follow from Eqs. 201, 202, and 203. In this case one additional
normal mode (essentially spatially exponential) appears. For the new mode
two cases must be distinguished: when ( f – fc – 1) > 0 the new eigenvalue Λ

and its eigenfunction Π( j) are given by [74]

Λ = f – 2
√

f – 1 cosh ψ (204)

and

Π( j) =
{

( f – 1) sinh
[
( j + 1)ψ

]
+ ( fc – f )

√
f – 1 sinh

(
jψ

)
(205)

+ ( f – fc – 1) sinh
[
( j – 1)ψ

]}
( f – 1)–j/2 ,
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where ψ is the solution of

sinh
[
(g + 1)ψ

]
=

f – fc – 1√
f – 1

sinh
(
gψ

)
. (206)

On the other hand, when ( f – fc – 1) < 0 the eigenvalue and eigenfunction of
the exponential normal mode obey [74]

Λ = f + 2
√

f – 1 cosh ψ (207)

and

Π( j) =(– 1) j {
( f – 1) sinh

[
( j + 1)ψ

]
– ( fc – f )

√
f – 1 sinh

(
jψ

)
(208)

+ ( f – fc – 1) sinh
[
( j – 1)ψ

]}
( f – 1)–j/2 ,

where ψ is determined from (refer to Eq. 206):

sinh
[
(g + 1)ψ

]
= –

f – fc – 1√
f – 1

sinh
(
gψ

)
. (209)

We note that the case ( f – fc – 1) = 0 does not lead to the appearance of expo-
nential normal modes, because one always has (g + 1)/g > 0 in this case.

Thus, in class (i) (normal modes involving the core) one finds (g + 1)
distinct, nondegenerate eigenvalues. In general, GD may have both spatially
periodical and exponential normal modes of class (i). Note that classical den-
drimers ( fc = f ) [196] and dendritic wedges ( fc = ( f – 1)) [78] have only
periodic normal modes in class (i), because for these two systems the inequal-
ity (g + 1)/g > |f – fc – 1|/√f – 1 is automatically fulfilled.

It is important to emphasize that the minimal nonvanishing eigenvalue
of class (i) is finite and does not depend on the generation number g, so it
it is insensitive to the GD size. Indeed, one can demonstrate that for spa-
tially periodical normal modes the eigenvalues are bound from below by
f – 2

√
f – 1, which is always positive, see Eq. 201. In turn, the eigenvalue Λ

of the spatially exponential mode (when it exists) is bound from below by
( fc + 1) – ( f – 1)/( f – fc – 1) for large g, so it is independent of g (note that
for fc = ( f – 1) no eigenvalue of exponential type exists). Thus, the values of
the eigenvalues in class (i) are not very sensitive to g; this is, however, not the
case for the eigenvalues of class (ii).

The normal modes of class (ii) have an immobile core. In the case when
only the core is immobile, the degeneracy of the corresponding eigenval-
ues is ( fc – 1)-fold: one can consider those in which the main GD branches
move to be eigenmodes. In order to keep the core immobile, only two
neighboring main branches have to move against each other. Now focusing
on one such branch, one can pick for it exactly ( fc – 1) different partner
branches [74, 78, 179, 196].

When the core is immobile, the problem turns (due to the symmetry of the
system) into that of separate, mobile subwedges. The Langevin equations of
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motion simplify in the same way as before. When only the core is immobile,
the eigenvalues λk are again defined by Eq. 201, but the eigenfunctions Πk( j)
and ψk are given [74, 78] by

Πk( j) = ( f – 1)–j/2 sin
(

jψk
)

(210)

and

sin
[
(g + 1)ψk

]
=

√
f – 1 sin

(
gψk

)
, (211)

where j = 1, ..., g. The number of distinct solutions ψk again depends on an
expression involving the parameters of the GD; Eq. 211 gives g distinct solu-
tions if (g + 1) >

√
f – 1 g. We note that this inequality can be fulfilled only for

( f = 3; g = 1), ( f = 3; g = 2), and ( f = 4; g = 1). In all other cases, Eq. 211 gives
only (g – 1) solutions. Then an exponential normal mode also appears, whose
eigenvalue is of the form of Eq. 204, with Π( j) and ψ given by [74, 78]:

Πk( j) = ( f – 1)–j/2 sinh
(

jψk
)

(212)

and

sinh
[
(g + 1)ψ

]
=

√
f – 1 sinh

(
gψ

)
. (213)

In this way one has g different eigenvalues in all cases. Now, taking into ac-
count the ( fc – 1)-fold degeneracy discussed before, one has a total of ( fc – 1)g
class (ii) normal modes, in which next-neighbors to the core move.

In general, larger groups of non-core GD beads can stay immobile. One
can use n (with 0 < n < (g – 1)) to denote the last generation in which all
fc( f – 1)n–1 beads are immobile. Evidently, ( f – 1) mobile beads are attached
to each of the immobile beads. A set of ( f – 1) subwedges implies a ( f – 2)-
fold degeneracy, so that the total degeneracy is now fc( f – 1)n–1( f – 2)-fold,
with n ∈ {1, ..., g – 2}. In the general case the eigenvalues λk are still given by
Eq. 201, with Πk( j; n) and ψk obeying [74, 78]:

Πk( j; n) = ( f – 1)–j/2 sin
[
( j – n)ψk

]
(214)

and

sin
[
(g + 1 – n)ψk

]
=

√
f – 1 sin

[
(g – n)ψk

]
. (215)

Similar to the situation when only the core is immobile, Eq. 215 has (g – n)
distinct solutions if (g – n + 1) >

√
f – 1 (g – n). If this condition is not ful-

filled, one obtains only (g – n – 1) solutions in this way. Then one additional
solution exists; it obeys Eq. 204, where now the corresponding eigenfunction
Π( j; n) and the ψ are given by [74, 78]:

Π( j; n) = ( f – 1)–j/2 sin
[
( j – n)ψ

]
(216)

and

sinh
[
(g – n + 1)ψ

]
=

√
f – 1 sinh

[
(g – n)ψ

]
. (217)
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Furthermore, in the special situation in which only the peripheral beads move
(n = (g – 1)) one has the fc( f – 1)(g–2)( f – 2)-fold degenerate eigenvalue λ = 1.

Thus, in class (ii) one has (g – n) distinct eigenvalues for each n ∈ {1, ...,
g – 1}; these are fc( f – 2)( f – 1)n–1-fold degenerate. The case n = 0 provides g
distinct eigenvalues, each ( fc – 1) times degenerate. Taking into account the
(g + 1) eigenvalues of class (i) too, one has a total of Nd eigenvalues, Nd be-
ing given by Eqs. 195 and 196. In this way, one obtains all of the eigenvalues
(relaxation times) of the GD, with their correct degeneracy.

The normal modes of two kinds found for GD correspond to two differ-
ent physical pictures. Spatially periodic normal modes are internal modes
inside the GD sub-branches; their eigenvalues are bound from below by
a g-independent value, f – 2

√
f – 1, see Eq. 201. In turn, spatially exponential

normal modes can be visualized through the motion of whole sub-branches
against each other. The corresponding eigenvalues may be very small in value,
providing a dominant contribution to the GD dynamics at long times. It was
shown [74, 78, 196] that the minimal, non-vanishing eigenvalue of the whole
GD, λGD

min, does indeed belong to class (ii), and that for large g it is approxi-
mately:

λGD
min � ( f – 2)2

( f – 1)(g+1)
. (218)

In other words it decreases exponentially with g. As expected, the minimal
GD eigenvalue, λGD

min, corresponds to a mode in which the largest (main)
branches of the GD move.

Thus, the approach described above avoids having to perform direct op-
erations on the connectivity matrix and makes it possible to get all of the
GD eigenvalues and eigenfunctions. All of these analytical findings were also
checked by extensive numerical matrix diagonalizations [74], which establish
perfect agreement. Moreover, the general results obtained in this section re-
produce the special results obtained previously for the classical dendrimers
( fc = f ) [179, 196] and for the dendritic wedges ( fc = f – 1) [78] nicely. For
instance, Eq. 218 for f = 3 agrees with the approximate expression for the
minimal eigenvalue of trifunctional dendrimers, Eq. 192. Also, the approach
can be extended to copolymeric dendrimers built from beads with different
mobilities [197].

In Fig. 20 we present the storage modulus [G′(ω)] of GD of fourth gener-
ation with trifunctional inner branching beads, while the functionality of the
core, fc, varies from 1 to 10. Noteworthy is the fact that in the intermediate
frequency domain the [G′(ω)]-curves do not scale (they do not show a power-
law behavior). In this region the G′(ω)-curves reveal the underlying dendritic
structure. Increasing the functionality of the core from fc = 1 to fc = 10 influ-
ences mainly the low-frequency domain, given that the contribution of the
maximal relaxation time of the GD increases with fc because of increasing
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Fig. 20 Reduced storage modulus [G′(ω)] plotted on double logarithmic scales versus the
reduced frequency ωτ0 for GD of fourth generation, g = 4, with trifunctional inner beads,
f = 3. The functionality of the core, fc, is varied from 1 to 10

mode degeneracy. As a result, the [G′(ω)]-curves in Fig. 20 shift to the left
when fc increases [74].

As a final remark, we note that only the basic GD were discussed here.
The approach presented here can be further generalized by replacing each in-
terbead bond by Rouse chains with P bonds (spacers). The classification of
the normal modes for such dendrimers with P > 1 is similar to that for P = 1
and was performed by Ganazolli et al [184]. It was demonstrated that in this
case the eigenvalues can be grouped as follows. There are (1 + gP) nondegen-
erate eigenvalues corresponding to the class (i) normal modes in the terms
of this section. The rest belong to class (ii); there are namely gP subgroups
of ( fc – 1)-degenerate eigenvalues and (g – 1 – k)P subgroups of eigenvalues
with degeneracy fc( f – 1)k( f – 2), where k = 0, 1, 2, ..., (g – 2) [184]. Note that
the eigenvalues of such GD with P > 1 were only obtained numerically [184];
the analytical treatment of these dendritic systems may be a subject for fur-
ther study.

8.4
Side-Chain Dendritic Polymers

As discussed in Sect. 8, the relaxation spectrum of a dendrimer differs con-
siderably from that of a polymer chain. Due to the symmetry of the den-
drimer many of its eigenvalues (relaxation times) are degenerate. This con-
trasts with the relaxation times of the Rouse chain which are all distinct
(nondegenerate), see Sect. 4. Therefore, considering hybrid structures formed
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Fig. 21 Polymer chain bearing a dendritic wedge in its middle

both by dendrimers and by chains is of particular interest. In this class
one finds structures which consist of chains with pendant dendritic groups.
These structures, called side-chain dendritic polymers, were recently synthe-
sized [198–201].

A GGS model was used to treat side-chain dendritic polymers [78]. The
model is given in Fig. 21; it consists of chains bearing dendritic wedges
(CBDW) in their middles. A dendritic wedge (DW) differs from a con-
ventional classical dendrimer in that its core has one main branch less:
fc = ( f – 1). For such DW the results of the previous section hold [74, 78]. In
particular, the maximal relaxation time of a DW is the same as that of a clas-
sical dendrimer, because this time corresponds to the motion of two main
branches against each other.

We do not expect the problem of determining the eigenvalues of CBDW
to have a simple, analytical solution. In [78] the problem was solved numer-
ically. The chains contain Nchain beads each; for symmetry’s sake Nchain is
taken to be an odd number, so that the DW divides the chain into two iden-
tical halves. Provided that the parameters of the wedge, f (functionality),
g (generation number), and fc = ( f – 1), are given, such a wedge consists of
Nw beads, as given by Eq. 195.

An interesting question concerns the relationship between the chain length
and the DW size. The longest relaxation times of a chain and of a wedge are
given by τ

(ch)
max � τ0N2

chain and τ
(w)
max � τ0( f – 1)g+1, respectively, see Eqs. 57 and

218, where τ0 = ζ/K is assumed to be the same both for the chain and for the
wedge. In the case of short chains, when τ

(w)
max > τ

(ch)
max, the relaxation of the

chain is strongly masked (screened) by the relaxation of the wedge, because
of the high density (degeneracy) of the DW modes as compared to the modes
of the chain. Thus, in the case of short chains one can expect an almost pure
dendrimer-type relaxation.

Much more interesting is the situation when the chains is very long, so that
τ

(ch)
max  τ

(w)
max; this happens for Nch  ( f – 1)(g+1)/2. In this case, for a fixed

chain length, the CBDW storage and loss moduli decrease with increasing g
in the intermediate frequency domain, see Fig. 22 for [G′(ω)]. This happens
as long as the inequality τ

(ch)
max  τ

(w)
max holds [78].

This theoretical result is in qualitative agreement with rheological data ob-
tained for side-chain dendritic polymers that consist of a polyurethane main
chain and of polyether wedges of second, third, and fourth generations [201].
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Fig. 22 Reduced storage modulus [G′(ω)] plotted on double logarithmic scales versus
the reduced frequency ωτ0 for chains bearing trifunctional dendritic wedges of third,
fourth, fifth, and sixth generation. All chains have the same length and consist of 51 beads
(Nchain = 51) [78]

It has a nice physical interpretation; as pointed out above, at high frequencies
(at small length scales) the CBDW dynamics is determined by the DW and
the influence of the chain is hidden. On the other hand, in the low-frequency
domain the CBDW dynamics is governed mainly by the long chain, since the
internal modes of the DW are not activated there. In fact, on such large length
scales the wedge behaves as a single “massive” particle having an overall fric-
tion constant of Nwζ . With increasing g the particle gets more damped and
hinders the mobility of the central bead of the chain to which it is attached
more and more. This, in turn, inhibits the excitation of large-scale, asym-
metric modes of the chain, leading to a speed-up of the terminal relaxation.
Interestingly, this has no effect on the longest relaxation time of the chain, be-
cause the corresponding eigenmode is symmetric with respect to the central
bead; in fact, this mode is related to the stretching of the Rouse chain at its
ends, a motion in which the central bead stays fixed [40].

Furthermore, the fact that a dangling DW suppresses some low lying fre-
quencies of the chain can be detected at ω = 0 by monitoring the zero shear
viscosity [η′(0)], see Eq. 22 . In general, [η′(0)] is proportional to the sum of
all finite relaxation times of the system in question. In the GGS framework,
the [η′(0)] of an isolated DW is found to increase with g. We note that for
dendrimers in dilute solutions, plotting the experimentally measured [η′(0)]
versus g shows a maximum at some critical generation gc. This feature is not
found here; in [190] it was related to the role played by the hydrodynamic in-
teractions. It turns out, however, that CBDW show the opposite trend, namely
that [η′(0)] decreases with increasing g for CBDW, see Fig. 23. This stems
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Fig. 23 Reduced zero shear viscosity [η′(0)]/τ0 plotted versus the number of generations,
g, for trifunctional dendritic wedges. Shown are results for chains of 51 beads bearing
dendritic wedges (solid circles) and for the corresponding individual dendritic wedges
(solid squares)

from the fact that the main contribution to [η′(0)] is from the long relaxation
times, some of which get suppressed when the size of the pendant DW gets
larger. This effect was indeed confirmed by rheological experiments on side-
chain dendritic polymers [201], in which g increased from 2 to 4. To conclude,
we note that the GGS approach, although being rather simplified, reproduces
qualitatively many important dynamical features.

9
Hyperbranched Polymers

As discussed in the previous section, the theoretical study of the dynamics
of branched polymers and especially of dendrimers is extremely interest-
ing. Viewed chemically, however, dendrimers are not simple to prepare, since
their geometrical perfection requires a whole series of reaction steps, with
necessary purification from unwanted by-products [172, 202–204]. For this
reason one rather prefers to perform batch reactions, which lead to randomly
structured (hyperbranched) macromolecules. Depending on the procedure,
good preparation methods may result in products whose polydispersity is
limited. The theoretical question which one is then confronted with is to
know which of the macromolecular properties are most influenced by dis-
order and which change less when the reaction products are not as symmetric
as perfect dendrimers. With this aim in mind, we will consider randomly-
branched polymers, a class of substances that is also important from a the-
oretical point of view, given that hyperbranched structures are, topologically
speaking, trees; in other words they do not have loops. The following sec-
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tion is devoted to randomly-branched polymers, whereas after it we will
discuss more regularly-shaped hyperbranched structures, namely comblike
and regularly-hyperbranched polymers.

It is important to realize that the validity domain of the GGS descrip-
tion is better known for linear chains than for general branched polymers.
The reason is similar to that discussed in Sect. 8.2 for the dendrimers: there
is no clear (unique) way to define a θ-temperature here, due to the higher
local density of monomers around branching points [205]. For instance, for
star polymers the θ-temperature depends on the number and the molecular
weights of the arms [193, 206, 207]. In dilute solutions the standard (pre-
averaged) Zimm approximation fails for stars [208] and hyperbranched poly-
mers [209] and, therefore, the hydrodynamic interactions have to be taken
into account explicitly. Also of interest is the fact that, distinct from gen-
eral fractals (see Sect. 6.3), the introduction of hydrodynamic interactions for
fractal hyperbranched structures does not destroy the dynamic scaling prop-
erties [210]. For concentrated solutions and for melts of branched polymers
entanglement effects seem to come into play at smaller molecular weights
than for linear chains; such effects depend on the particular macromolec-
ular architecture and on the size of the dangling chains. To account for
entanglements, the tube theory was successfully applied to several branched
structures, including stars [211, 212], tree-like (Cayley tree) polymers [213],
pom-pom polymers [214, 215], combs and H-polymers [55, 195]. The limita-
tions discussed in this paragraph have to be kept in mind when considering
the GGS dynamics of hyperbranched polymers.

9.1
Randomly-Branched Polymers

As stated above, topologically-hyperbranched macromolecules are trees; such
structures are devoid of loops. One can then envisage the whole structure as
starting from one central monomer, whose effective functionality in the net-
work is f . In the simplest case the monomers attached to it may either have
the same functionality (and thus be bound to other monomers) or be at the
ends of dangling bonds. In this case (the functionality of each bead is either 1
or f ) the (percolating) network is a subset of the (infinite) Cayley tree; clearly
the same holds for the dendrimers. More disorder can also be envisaged: this
is the case when some monomers in the network have functionalities different
from 1 or f . We will consider both cases of disorder in the following.

We start with the simpler case [216], in which the random branched struc-
tures are constructed analogously to the dendrimers; we take f = 3 as an
example. Then one begins with a three-functional starting unit but, distinct
from the dendrimers, the branches are added not generation-wise but step-
wise. We also keep track of orientation, taking it to point outwards from the
origin. At each step a terminal vertex (TV) is chosen randomly and a pair of
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Fig. 24 A randomly branched structure with N = 10. The open circle represents the point
from which the GGS starts to grow

branches are attached to it (with outward orientation), by which two new TV
are created, see Fig. 24. This procedure defines a particular class of branched
polymers, for which the functionality of all internal vertices equals f = 3, and
where Nt, the number of TV, is related to N by Nt = 1 + N/2. Evidently, the
dendrimers belong to this class. When contrasting ordered with disordered
structures, it is reasonable to take their N values to be very close, in order to
highlight the effects of topological randomness on the dynamics. The above
construction automatically attaches a direction to each bond, a feature which
is useful when also taking angular constraints into account.

In [216] the dynamics of such randomly-branched objects were evalu-
ated in the GGS framework, which was extended by also including angular
and hydrodynamic interactions. In the calculations 105 realizations were used
for objects as large as N = 190 and for generations up to g = 6. We present
[G′′(ω)] for such a random hyperbranched structure in Fig. 25. The data are
from [216] and we consider two situations, namely one in which the an-
gles between bonds are unrestrained (classical GGS-case) and one in which
the angles have a preferential orientation, see [216] for details. Note that in
Fig. 25 a shallow minimum for 1 < ωτ0 < 10 appears, a fact also observed
in [180]. Interestingly, in G′(ω) and G′′(ω) the effect of the disorder is not
very strong [216]. This, of course, may be due to the fact that the sixth gen-
eration (g = 6) is still too small to show large structural variations. Much
more pronounced in G′(ω) and G′′(ω) are the influences of the hydrodynamic
interactions and of the angular restrictions. The two effects go in different
directions; while the hydrodynamic interactions act to reduce the dynamical
range (and thus the width of the intermediate domain), the inclusion of an-
gular restrictions increases the dynamical range (and hence the width of the
intermediate domain). Interestingly, the effect goes in the same way for both
regular structures and disordered hyperbranched molecules [216].

Moreover, the quantity that turns out to be most affected by disorder is
G(t). It shows large deviations from exponentiality and a clear-cut depen-
dence on the geometrical and hydrodynamical aspects [216]. Evidently, it
would be worthwhile to go to much larger values of N. Here, however, we
reach a dilemma: while the eigenvalues of some regular structures can be
obtained iteratively up to very high values of N [104–106], see also Sect. 6,
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Fig. 25 Reduced loss modulus [G′′(ω)] plotted on double logarithmic scales versus the re-
duced frequency ωτ0 for random branched polymers with g = 6 and N = 190. Shown are
the cases in which the angles between branching points are free (solid line) and in which
a tetrahedral arrangement of angles is preferred (dashed line)

disordered structures do not offer such possibilities in general. In fact, with
disordered structures the main problem does not stem from the technical dif-
ficulties associated with diagonalizing matrices for structures larger than, say
N = 100, but from the need to average over many different realizations.

In this way one has consider other analytical methods apt to treating dis-
order. Here the advantage is that one deals with trees. Now, one may envisage
the trees to have been created sequentially, according to a given probabilistic
pattern. As we proceed to show, this feature allows us, based on the replica
formalism, to develop a systematic way to compute the ensemble-averaged
eigenvalue spectrum [217, 218]. In this way one automatically takes into ac-
count the averaging over distinct structural realizations. Here we follow the
procedure of [219], which, by extending the theoretical study of gel dynam-
ics given in [162], results in an integral equation formalism. Interestingly, as
also found before [162], for specific probability distributions of the springs’
strengths, the integral expressions take a particularly simple form.

In the model considered in [219], each realization of a randomly branched
structure starts from a single monomer, to which one tries to attach a bond
that ends in a new monomer with probability p. The attempt to add a bond is
repeated f times, so that the number of bonds added to a starting monomer
obeys a binomial distribution, and is, at most, f . The next step repeats the
procedure of adding a bond ( f – 1) times at each of the monomers created
in the previous step. Proceeding iteratively one obtains a randomly branched
loopless structure [219]. The process of adding bonds ends if no bonds are
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added in a given step. This event occurs with probability 1 below the perco-
lation threshold pc = 1/( f – 1) [220–222]; however, for p > pc, there is a finite
probability that the process never stops, and thus an infinite branched struc-
ture is formed.

For each of the structures obtained in this way, one has a Langevin equa-
tion, see Eq. 2, from whose eigenvalues the usual dynamic quantities follow.
These involve for a certain structure S only the eigenvalues’ density �S(λ) of
the corresponding Laplace matrix AS. Now, the ensemble-averaged density of
eigenvalues is given by

�(λ) = 〈�S(λ)〉 ≡
∑

S

ωS�S(λ) , (219)

where the sum extends over all structures, each of the �S(λ) is normalized,
and ωS denotes the probability that S is created in the iterative growth pro-
cedure. Each S created in this way is connected, so that AS has only one zero
eigenvalue, whose corresponding eigenvector is homogeneous. Therefore, it is
convenient to split off the resulting delta peak of �(λ) at λ = 0 with weight �0
by writing

�(λ) = �0δ(λ) + �+(λ). (220)

From the density of states �(λ) one can obtain in a simple way the basic quan-
tities, namely the mean bead displacement at time t, the relaxation modulus
G(t) and the loss and storage moduli G′(ω) and G′′(ω). We dispense from dis-
playing these expressions which depend on �(λ) here, and point to [219] for
the details.

The procedure used in [219] to determine �(λ) is as follows. The construc-
tion of the class of randomly-branched macromolecules considered above
is not changed if one places the monomers from which the structures are
built on the nodes of an f -functional Cayley tree and fills in the bonds, with
probability p, in the order of increasing chemical distance from the starting
monomer 0 at the origin. On the other hand, one may draw the bonds in ar-
bitrary order, given that their probabilities of showing up are independent.
Therefore, the wS defined in Eq. 219 is the same as the probability of finding
that the origin belongs to an S-cluster in the bond-diluted Cayley tree. Due to
the symmetry of the Cayley tree, this probability is also independent of the
choice of any particular monomer as being the origin.

One then considers, in the diluted Cayley tree picture for a particu-
lar monomer j, the diagonal element Rjj(λ) = R(λ) of the resolvent R(λ) =〈
(AC – λ1)–1

〉
, averaged over all bond distributions [219]:

R(λ) =
〈
(AC – λ1)–1

jj

〉
. (221)

A particular realization C of the Cayley tree for a certain placement of bonds
is formed by disjoint clusters of beads, a cluster being a set of beads connected
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to each other by bonds. Because of this, the AC corresponding to C can be
written in block diagonal form, with block matrices given by the AS of the
corresponding clusters. One has therefore

(AC – λ1)–1
jj = (AS – λ1)–1

jj , (222)

where S consists only of the monomers belonging to the cluster of j. Further-
more, the probabilities ωk,S that a certain monomer is at a certain position
k of S do not depend on k; one has thus ωk,S = ωS/ |S|, where |S| denotes the
number of monomers inside S. This leads to

R(λ) =
∑

S

|S|∑

k=1

ωk,S(AS – λ1)–1
kk =

∑

S

ωS
1
|S|

|S|∑

k=1

(AS – λ1)–1
kk . (223)

Using the relation

�(λ) = lim
ε–→0

1
π

Im R(λ + iε) , (224)

one has for the normalized density of states of the S cluster,

�S(λ) = lim
ε–→0

1
π

1
|S| Im

|S|∑

k=1

(AS – (λ + iε)1)–1
kk . (225)

In fact, due to the symmetries mentioned, one can even choose for j in Eq. 221
the origin

R(λ) =
〈
(AC – λ1)–1

00

〉
. (226)

Now, the average over the disorder can be performed [219] with the help
of the replica method, see [223]. Allowing the strength of each bond to
be weighted [162] according to a normalized coupling strength distribu-
tion D(µ)

F(rj, rk) ≡ q + p

∞∫

0

dµ D(µ) exp
[

– i
µ

2
(rj – rk)2

]
, (227)

and performing the necessary recursive integrations, one is led [219] to the
equations for a tree of generation g, namely to

R(g)(λ) =–
1
λ

∞∫

0

dx e–x
{
φ(g)(x)

}f
(228)

and to

φ(g)(x) = q + p Ô e–x
{
φ(g–1)(x)

}f –1
. (229)
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Here Ô is the linear operator

Ô =

∞∫

0

dµ D(µ) exp
[

–
λ

µ
x∂2

x

]
=

∞∑

k=0

〈
µ–k

〉
µ

k!

(
– λ

)k (
x∂2

x
)k

, (230)

where 〈...〉µ denotes the average over the distribution D(µ). For an infinite
Cayley tree the recursion relations take the form of a single integral equation
of the function φ(x) ≡ limg→∞ φ(g)(x):

φ(x) = q + p̂O e–x {φ(x)}f –1 , (231)

and furthermore

R(λ) =–
1
λ

∞∫

0

dx e–x {φ(x)}f . (232)

As shown in [219] and paralleling [162], the analytical work simplifies con-
siderably for the following distribution of bond strengths:

D(µ) =
1
µ2 exp(– 1/µ) , (233)

since for it the operator Ô, Eq. 230, takes the form

Ô =

∞∫

0

dµ
1
µ2 exp(– 1/µ) exp

[
–

λ

µ
x∂2

x

]
=

[
1 + λx∂2

x
]–1

. (234)

For instance, applying 1 + λx∂2
x = Ô–1 to both sides of Eq. 229, one obtains the

ordinary second-order differential equation

φ(x) + λx∂2
xφ(x) = q + p e–x {φ(x)}f –1 . (235)

For large λ one obtains analytically [219] that �(λ) obeys

�(λ) � fpλ–2 . (236)

Equation 235 has to be solved subject to the boundary conditions

φ(0) = 1 and φ(∞) = q . (237)

These equations allow us to determine �(λ), as shown in [219]. The cor-
respondence between the theoretically-determined �(λ) and the results of
numerical diagonalizations turns out to be very good for small and medium-
sized GGS. This leads us to expect that the analytic results may be also trusted
for even larger GGS, constructed in the manner described above.

We turn now to quantities of special experimental importance, such
as G′(ω) and G′′(ω), which were evaluated using the method already dis-
cussed [219], and which turned out to be rather smooth curves. This fact is
caused by the vast number of different hyperbranched structures with bonds
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of different strengths, which all contribute to G′(ω) and G′′(ω), and differs
from the cases of single dendrimers or of hyperbranched structures with
a fixed number of monomers [216]. In these cases one recognizes the sig-
nature of the underlying structures in the behavior of G′(ω) and G′′(ω) at
intermediate ω; thus doubly logarithmic plots of G′(ω) and G′′(ω) in [33]
and [13] showed logarithmic-type behavior for the dendrimers, which is re-
lated to their exponential growth with g.

9.2
Comblike Polymers

Comblike structures [205] form a special class of regularly-branched poly-
mers. A comblike network is constructed starting from a Rouse chain of N
beads called the root chain (or zeroth generation). Other N chains of the same
or of different lengths are connected at one of their ends to the root chain. In
general, this is the usual form of a regular comb (of first generation). On the
other hand, one can also let each chain of this first generation act as a root
chain, which leads to the next (second) generation, see a particular example
in Fig. 26. The continuation of this procedure was proposed in [224], which
leads to a comblike network of generation g, which, letting each chain have
N beads, consists of Nch = 1 + N + N2 + N3 + ... + Ng chains. Using the un-
derlying symmetry of the system in question, the eigenvalue problem can be
recursively reduced to that of a related problem for smaller matrices. The re-
sulting characteristic equation |A – λI| = 0 was then analyzed in the limit of
short and long relaxation times [224].

The authors [224] found that, in the short time limit, the relaxation times
of the comblike structure are very close to the relaxation times of the corres-
ponding number, Nch = (Ng+1 – 1)/(N – 1), of free linear chains [224]. In the
limit of long relaxation times, the complex dynamic modulus of the comblike

Fig. 26 Comblike structure of second generation growing from a root Rouse chain (gen-
eration zero). All chains of the comb consist of three beads, N = 3. The chains belonging
to the last (second) generation, are represented by dashed lines
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network turns out to be well approximated by [224]

[G∗(ω)] �
g∑

k=1

Nk iωτk

1 + iωτk
, (238)

where the sum only goes over the long relaxation times τk of each generation,
which are given by [224]

τk = τ0
(Ng–k+1 – 1)N

N – 1
, (239)

with τ0 = ζ/K being, as usual, the characteristic time. From Eq. 239 it follows
that the longest relaxation time of the comb of generation g is of the order
of τ0Ng , see Eq. 239 for k = 1. Using Eqs. 238 and 239 the storage modulus
[G′(ω)] of the comblike network at low frequencies reduces to [224]:

[G′(ω)] � N2

(N – 1) ln N
(ωτ0) (240)

×
[

arctan
(

N – 1
N

1
ωτ0

)
– arctan

(
N – 1
Ng+1

1
ωτ0

)]
.

Thus, in the low-frequency region, 1/τ1 � ω � 1/τ0 (where τ1 ∼ τ0Ng , see
Eq. 239 for k = 1), one has [G′(ω)] ∼ (ωτ0). This differs from the intermedi-
ate region, where one finds a Rouse chain behavior, [G′(ω)] ∼ (ωτ0)1/2, given
that at higher frequencies the network behaves as an ensemble of free Rouse
chains [224]. The above comblike structure, which can be thought of as being
an example of a polymer network with dangling chains, has a dynamic be-
havior which qualitatively resembles that of a regular 2-D network built from
Rouse chains, see Sect. 5.2.2.

The stretching of comblike networks of the first generation under external
forces was studied in [225]. The authors considered a comb-ring (a comblike
structure with the root being a closed Rouse chain (ring) of N beads). Based
on the direct numerical diagonalization of the connectivity matrix A of the
comb-ring, 〈δYm(t)〉 = 〈Ym(t)〉 – F(ext)

0 t/Ntotζ was calculated; this expression
gives the displacement under an external force of the mth bead with respect
to the center of mass of the system, see also Sect. 3.3. Here the index m num-
bers the beads in the chains attached to the backbone ring and ranges from
m = 1 (the bead belongs the backbone) to m = N (the bead is situated at the
free end of one of the chains which form the comb-ring). It was found that the
response of comb-rings to external forces depends much on the distance from
the backbone to the particular bead on which the external force acts [225].

In the domain of very short times, 〈δYm(t)〉 is mainly governed by the
functionality f of a particular bead. The stretching 〈δYm(t)〉 is minimal for
beads which belong to the backbone ring ( f = 3) and is maximal for beads at
the tips of the chains ( f = 1). The case of inner beads of chains ( f = 2) is in-
termediate. In the region of very long times, the stretching 〈δYm(t)〉 reflects
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the distance between the mth bead and the backbone. The limiting value of
〈δYm(t)〉 at t → ∞ is found to be proportional to m (to the the distance from
the root ring). At intermediate times the quantity 〈δYm(t)〉 displays scaling,
in other words 〈δYm(t)〉 ∼ tα [225]. Remarkably, the exponent α depends on
m (on the position of the bead in the chain). For instance, in the case N = 50
one has α = 0.24 for m = 1 and α = 0.53 for m = 50, demonstrating again the
strong sensitivity of 〈δYm(t)〉 on the bead–backbone distance. After averaging
〈δYm(t)〉 over all beads, α turns out to be α = 0.5, an exponent typical of the
standard Rouse chain, see Eq. 69.

9.3
Regular Hyperbranched Polymers

In this subsection we will consider (distinct from the dendrimers of Sect. 8)
another class of regular hyperbranched polymers. We recall that the quest for
simplicity in the study of complex systems has led to fruitful ideas. In poly-
mers such an idea is scaling, as forcefully pointed out by de Gennes [4]. Now,
the price to be paid in going from linear chains to star polymers [33, 194],
dendrimers [13, 33, 194, 205] and general hyperbranched structures [216] is
that scaling (at least in its classical form) is not expected to hold anymore (at
least not in a simple form, which implies power-law dependences on the fre-
quency ω or on the time t). One of the reasons for this is that while several
material classes (such as the Rouse chains) are fractal, more general struc-
tures do not necessarily behave as fractals.

Interestingly, there exists a family of hyperbranched structures which obey
dilation symmetry. These regular hyperbranched polymers (RHP) can be
constructed iteratively, by going from generation g to generation g + 1 in
a deterministic way (very reminiscent of the construction of the dendrimers,
Sect. 8, and of the dual Sierpinski gaskets, Sect. 6). The original RHP with
coordination number f = 4 were introduced by Vicsek [226], and their dy-
namical properties were later investigated in [227–230]. From this work it
became clear that the eigenfunctions of RHP, and especially their eigenvalues,
obey rather simple rules; the authors of [227–230] computed the eigenvalues
of RHP with f = 4, the Vicsek fractals, by determining the roots of iteratively-
constructed polynomials numerically.

Theoretically, when searching for scaling [9, 95], it is important to study
other RHP in which f varies, as done in [231, 232]. The topology of RHP is
displayed in Fig. 27, which shows the f = 3 structure schematically in 2-D. One
starts from the object of generation g = 1, consisting here of f + 1 = 4 beads
arranged in a star pattern, the central bead having three neighbors. To this
object one attaches f identical copies of itself at the next generation, through f
bonds, in a star-wise fashion. Hence the next stage object (g = 2) consists of 16
beads. The iteration is now obvious; Fig. 27 presents the finite f = 3 RHP for
g = 3. Note that the structure is quite ramified in this way; the regular pattern



Generalized Gaussian Structures 265

Fig. 27 An example of a regular hyperbranched polymer, RHP

of Fig. 27 has a fractal dimension d̄r of

d̄r =
ln( f + 1)

ln 3
, (241)

since increasing the distance from the center (the radius) by a factor of 3 in-
creases the number of beads inside it by ( f + 1). Note that through Eq. 241,
the extreme overcrowding found for dendrimers (where d̄r = ∞) does not
appear in RHP.

We first recall some aspects related to the chemical realization of RHP [232,
233]. These include the geometry in terms of composition, structure and
steric requirements and also their synthesis. Now, RHP consist of structural
entities in which the valence equals 1, 2 and f , entities denoted by M1, M2
and Mf , respectively, which may be chosen from a set of different chemical
species. One has then a large variety of Mf entities at one’s disposal, such as
the building blocks of polycarbosilanes [234, 235] or copolyesters [236–238].
For f = 3, condensed triarylamines are interesting candidates; they have been
synthesized as bridged molecules [239, 240]. Moreover, even the case f = 6 can
be realized [232, 233] by using triarylamines bound to rather small benzene
rings [241].

As shown in [231, 232], the eigenvalues of RHP can be obtained very easily,
for arbitrary f and g, through an algebraic iterative procedure, which involves
the Cardano-solution for cubic equations [242]. These findings open the way
to studying the dynamics of arbitrarily large, finite RHP theoretically.

To describe the determination of the RHP eigenvalues we follow the pro-
cedure of [231, 232]. In order to solve (A – λI) Φ = 0 one notes [231] that
the architecture of a RHP displays f -coordinated centers ( fCC), connecting
bonds, and also dangling bonds; hence each of its beads has either f , 2 or 1
neighbors. Setting φ0 for the component of the fCC in (A – λI)Φ = 0, typical
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equations for its neighboring sites are [231]

( f – λ) φ0 =
f∑

j=1

φj , (242)

(2 – λ) φf = φ0 + φm , (243)

and

(1 – λ) φ1 = φ0 . (244)

One can then transform [231], by simple algebraic means, Eqs. 242 to 244 to
a set involving the coordinates of nearest-neighboring fCC, obtaining:

( f – P(λ)) φ̃0 =
f∑

j=1

φ̃j , (245)

(2 – P(λ)) φ̃f = φ̃0 + φ̃m , (246)

(1 – P(λ)) φ̃1 = φ̃0 , (247)

with

P(λ) = λ(λ – 3)(λ – f – 1) . (248)

The procedure is then iterated k times, during which P(λ) gets replaced by
pk(λ) = P(pk–1(λ)).

For finite RHP Eq. 248 allows us to determine the eigenvalues at generation
g + 1 from those at generation g through the relation [231]

P
(
λ

(g+1)
i

)
= λ

(g)
i . (249)

Evidently, in this way each previous eigenvalue gives rise to three new ones, a
fact already noted [227–230, 243] for the case f = 4. Moreover, at every gen-
eration one has the non-degenerate mode λ1 = 0; furthermore there is one
nondegenerate mode corresponding to the eigenvalue ( f + 1) and ∆g new
degenerate modes corresponding to the eigenvalue 1, where [231]

∆g = ( f – 2)( f + 1)g+1 + 1 , (250)

an expression which extends the findings of [227–230] to arbitrary f . One can
then show [231] that one has obtained all the eigenvalues in this way.

Furthermore, Eqs. 245, 248 and 249 can be used to compute the λ
(g)
i itera-

tively [231], based on the roots of the polynomial

x3 – ( f + 4)x2 + 3( f + 1)x – a = 0 . (251)
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Introducing

p =
1
3

[
f ( f – 1) + 7

]
, (252)

q =
1

27
(5 – f )( f + 4)(2f – 1) , (253)

and

� =
∣∣p/3

∣∣3/2 (254)

the roots of this polynomial are given by the Cardano-solution, see [242]

xν = ( f + 4)/3 + 2�1/3 cos((φ + 2πν)/3) , with ν ∈ {1, 2, 3} , (255)

where

φ = arccos((a – q)/2�) . (256)

Using this procedure one can determine the eigenvalue spectrum of very large
RHP to very high accuracy [231]. Moreover, the spectral dimension also fol-
lows from Eq. 251. One has

d̃ =
2 ln( f + 1)
ln(3f + 3)

. (257)

From the so-determined eigenvalue spectrum one can then calculate all
of the dynamical quantities discussed in Sect. 3. We exemplify the situ-
ation using the storage modulus G′(ω), given by Eq. 20 and presented in

Fig. 28 Reduced storage modulus [G′(ω)] plotted on double logarithmic scales versus the
reduced frequency ωτ0 for RHP with f = 3. Shown are results for the fractals with N = 43,
N = 45, N = 47, N = 49, N = 411, and N = 413 beads (from right to left)
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Fig. 28. For this calculation finite fractals extending from N = 43 to N = 413

were used [231]. Clearly evident from Fig. 28 are the limiting, connectivity-
independent behaviors at very small and very high ω; for ω � 1 one has
G′(ω) ∼ ω2 and for ω  1 one finds G′(ω) ∼ ω0. Again the fractal connectivity
aspect is given by the in-between region; here by going from N = 43 to N = 413

one finds [231] a change in the minimal slope from 0.621 to 0.557. Comparing
the last value to d̃/2 ∼= 0.55788, Eq. 257, demonstrates, as for the fractals dis-
cussed in Sect. 6, that for the dynamic properties of fractals the fundamental
quantity is the spectral dimension.

10
Hybrid Polymer Structures

10.1
Regular Structures Constructed From Small-World Rouse Networks

We end this review with a discussion of complex polymer systems which have
two levels of organization. First, we further develop the domain approach
formulated in Sect. 7.5 to describe heterogeneous polymer networks. There
the cross-link agglomerations (clusters) formed due to random cross-linking
were treated independently of each other. However, for sufficiently dense
polymer systems the clusters are themselves interconnected; this is reflected,
for example, in the non-zero values of the equilibrium moduli of polymer net-
works and gels [3]. In fact, the networks appear to be disordered on small
length scales, but they are rather homogeneous on larger scales.

A simple way to take into account these structural features is to cross-link
highly disordered pieces of a network in some regular fashion. To model such
a situation, topologically-regular structures built from small-world Rouse
networks (SWRN) were considered, see Fig. 29 [31, 73]. The SWRN them-
selves were discussed in Sect. 7.2 and the general treatment of topologically-
regular networks built from arbitrary cells was the subject of Sect. 5.3. Bring-
ing these developments together allows us to “decorate” a regular network
(say square or cubic) by replacing its bonds with SWRN subunits. As an ex-
ample, we consider here square networks composed of such SWRN. In the
construction of a SWRN realization one starts from a Rouse chain consisting
of n beads. Then one connects each bead in a random way to some other bead
by means of additional bonds (springs), with a probability q/n. Finally, the
SWRN realization is used as a pattern for the subunits of a 2-D N ×N square
network. In this way all of the SWRN subunits in the network are identical
and one is fixed in each realization with respect to the pattern and size of the
SWRN. This, on the other hand, allows us to use the procedures displayed in
Sect. 5.3; one has a 2-D square network built from identical cells, each cell
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Fig. 29 Two-dimensional regular lattice built from SWRN subunits

consisting of one lattice junction and two SWRN attached to it (s = (2n + 1)
beads in total).

In Fig. 30 we show the storage modulus [G′(ω)] of a network built from
SWRN. The case q = 0 corresponds to a regular network built from Rouse
chains [25, 66, 68, 69], see also Sect. 5.2; for q = 0 [G′(ω)] displays several char-
acteristic frequency ranges. Just next to the domain of very high frequencies
one has a frequency region dominated by the internal relaxation of Rouse
chains, [G′(ω)] ∼ (ωτ0)1/2; this domain is followed by the relaxation of the
network, which for a square pattern is characterized by [G′(ω)] ∼ ωτ0. Finally,
at even lower frequencies, one has the domain of terminal relaxation, with the
usual [G′(ω)] ∼ (ωτ0)2 dependence.

Fig. 30 Reduced storage modulus [G′(ω)] versus the reduced frequency ωτ0 plotted on
double logarithmic scales. Shown are results for 20× 20 networks of SWRN-subunits
(n = 200) with q = 0 (solid line), q = 0.05 (solid line with triangles), and q = 0.8 (solid line
with circles). To point out the intra-subunit domains of relaxation, also displayed are the
results for the corresponding, individual SWRN (dashed lines)
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Remarkably, even a small number of additional bonds, q �=0, which trans-
form the Rouse chains to SWRN, drastically change the relaxation behavior,
see Fig. 30. With increasing q the domain of the intra-subunit (in other words,
the intra-SWRN) relaxation gets smaller, revealing the increase with q of
the rigidity of the SWRN subunits; parallel to this finding, for q �=0 the scal-
ing (power-law) behavior disappears. Interestingly, for large q one observes
a plateau-type behavior in G′(ω), in the region intermediate between intra-
subunit and pure network relaxation. Such an unusual behavior is due to the
gap in the relaxation spectrum of the network: this gap extends between the
maximal relaxation time of a SWRN subunit and the minimal relaxation time
of the network of cross-links [31, 73].

Similar dynamic features are displayed by the average displacement of
the beads under external forces 〈〈Y(t)〉〉, see Fig. 31. Again, with increas-
ing q (number of additional bonds) the domain of internal relaxation of the
SWRN-subunits becomes narrower. For large g one even observes a plateau-
type behavior in the time region lying between the internal SWRN modes
and the modes of the underlying network of cross-links. More specifically,
after an initial domain of very short times one can see a regime corres-
ponding to the internal relaxation of the SWRN. After this domain ends, the
individual SWRN do not yet “feel” the large network structure and they be-
have like SWRN with immobile ends. The existence of a region leading to
a plateau-like behavior is related to the previously-discussed pseudogap in
the eigenvalue spectrum of individual SWN [133], see also Sect. 7.2. Now,
this pseudogap lies between the minimal non-vanishing SWRN eigenvalue

Fig. 31 Reduced average displacement 〈〈Y∗(t)〉〉 = 〈〈Y(t)〉〉 ζ/τ0F(ext)
0 versus the reduced

time (t/τ0) plotted on double logarithmic scales for 2-D networks built from SWRN-
subunits. Here q varies from 0 to 0.8. All curves are averaged over 100 SWN realizations
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and the maximal eigenvalue of the underlying network of cross-links: in this
regime the dynamics of the network are intermediate between those of SWRN
with a free and with a frozen center of mass (given that through embedding
the displacement of the center of mass gets hindered), so it tends to a flatter
form [73]. Then one has an intermediate regime corresponding to the com-
bined dynamics of the SWRN subunits and of the 2-D network. At longer
times a cross-over domain appears, corresponding to the dynamics of the 2-D
network, a domain which extends up to the region of the drift of the cen-
ter of mass, see Fig. 31. In this way specific features of hybrid heterogeneous
networks (which combine high local disorder and mesoscopic order) are mir-
rored by their relaxation forms, such as the shear dynamic modulus and the
displacement of monomers under external forces [31, 73].

10.2
Polymer Networks Bearing Dendritic Wedges

In Sect. 8.4 we discussed side-chain dendritic polymers. Recently, even more
complex polymer structures have been synthesized, namely polyurethane
networks which bear dendritic wedges (DW) of different generations [244]. In
these networks the DW are grafted to the middle of each chain of the network;
see the sketch in Fig. 32. The existence of branched dangling DW in polymer
networks renders these systems very interesting for dynamic studies, since
we can achieve direct control over the mobility of the chains in the network
by varying the generation number (the size) of the dangling DW [244]. Evi-
dently, increasing the size of the DW leads to a corresponding decrease in the
mobility of the elastic network strands to which the DW are attached.

The simplest GGS model for such polymer networks is the so-called “fixed-
chain-ends” model: a single chain bearing dendritic wedges (CBDW), whose
ends are fixed in space (immobile) [78]. From a physical point of view, it cor-

Fig. 32 2-D polymer network built from chains bearing dendritic wedges. Note that in
the simplified “fixed-chain-ends” model the cross-linking points (depicted here as open
beads) are assumed to be fixed in space, see text for details
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responds to a situation in which the cross-links have extremely low mobility.
In such a case the scales of motion of the network strands and of the cross-
links are well separated [61, 142]. As we will see, even such a simple model
captures some of the features of the dynamics of polymer networks bearing
DW. As before in Sect. 8.4, we are mostly interested in the situation when the
linear chain is long with respect to the length scale of the wedge (when its
longest relaxation time exceeds that of the DW).

In Fig. 33 we display [G′(ω)] for chains with 51 beads, while varying g
(the size) of the DW. Comparing the storage modulus [G′(ω)] for CBDW with
free and with fixed ends reveals that at the beginning of the low-frequency
domain (at moderately low frequencies) both systems behave in very simi-
lar fashions, which indicates that fixing the chain’s ends in this ω-range does
not affect the dynamics. At lower frequencies, however, the [G′(ω)] decay be-
comes slower for cross-linked CBDW than for free CBDW; this even leads for
large g to a tendency to form a plateau close to the region where the terminal
ω2-behavior starts, see Fig. 33. Interestingly, the width of the quasi-plateau
domain increases with g, so that for larger g the terminal relaxation of the
storage modulus shows up at lower frequencies [78]. This flattening of [G′(ω)]
appears in the low-frequency domain where no internal relaxation of the DW
takes place; the behavior, hence, can be well reproduced by a simplified model

Fig. 33 Reduced storage modulus [G′(ω)] versus the reduced frequency ωτ0 plotted on
double logarithmic scales. Shown are results for 2-D networks bearing trifunctional den-
dritic wedges of fifth (dashed line) and seventh (solid line) generations. Also displayed are
the results obtained from a simplified “fixed-chain-ends” model for the same dendritic
wedges, namely g = 5 (line with stars) and g = 7 (line with circles). The chains between
the cross-links consist of 51 beads each
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in which a DW (grafted to a chain with fixed ends) is replaced by a single
“big” bead accumulating the friction of the whole wedge, see also Sect. 8.4.

The tendency of the [G′(ω)]-curves to form a plateau, see Fig. 33, implies,
in fact, a very slow relaxation process. Given that the motion of the central
monomer of the chain with fixed ends is hindered by the “massive” dan-
gling DW, the behavior of the system in the low-frequency domain (where
the intra-wedge relaxation is unimportant) is given by the relaxation of the
two (almost independent) halves of the original chain. Such a behavior has
a maximal relaxation time equal to τchain/4, where τchain is given by Eq. 57.
A slower relaxation process involves the center of mass of the whole CBDW
with free ends (note that λ1 �= 0 because of the fixed ends). Therefore, a DW
acting as a single big bead with friction constant Nwζ also participates in this
motion. This increases the overall friction involved and leads to a correspond-
ing jump in the relaxation times [78]. Thus, one can attribute the flattening
in [G′(ω)] to the difference between the longest relaxation time of the whole
CBDW, τ

(CBDW)
max , and of the corresponding time for a half chain, τchain/4.

In real polymer networks the mobility of the cross-link points is interme-
diate between immobile and free, leading to cooperative modes which involve
simultaneous, correlated motions of several CBDW. To model this situation
one can use the approach based on regular networks built from complex cells,
which was discussed in Sect. 5.3. More specifically, a topologically-square net-
work formed from CBDW (see Fig. 32) can model a CBDW network [244]. In
the framework of Sect. 5.3 the elementary cell consists of a cross-link point
and two CBDW.

It turns out that the relaxation features observed for CBDW with immo-
bile ends (or immobile cross-links) carry over to the regular networks built
from CBDW, see Fig. 33. For large g one again sees the tendency of [G′(ω)]
to form a plateau at intermediate frequencies; this behavior is followed at
low frequencies by a power-law relaxation due to the underlying network of
cross-links. As pointed out above, such a plateau stems from the gap in the
spectrum of CBDW with fixed ends. This picture is very different from that
encountered in the study of regular networks of Rouse chains, where the re-
laxation spectrum is continuous and no plateau appears [25, 66, 68, 69], see
Sect. 5.2. Thus, the plateau-type behavior of [G′(ω)] found in polymer net-
works bearing DW is due to the large dangling DW, which slow down the
relaxation at intermediate frequencies. As a final remark, we note that the
choice of the regular network is not crucial here, since it affects only the low-
frequency behavior. The most interesting and non-trivial domain is situated
at higher frequencies and, therefore, is hardly influenced by the type of the
network [78].
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10.3
Dendrimer-Based Polymer Networks

We end our exposition of “hybrid” polymer systems with two levels of
structural organization with dendrimer-based polymer networks. Due to
the topological features of dendrimers (a tree-like structure growing from
a central core), the number of peripheral monomers increases exponentially
with the number of generations. Under certain conditions these monomers
may be chemically active; this makes dendrimers very attractive for use as
building blocks (dendrimer building blocks, DBB-blocks) in the construc-
tion of new types of hybrid polymer materials with well-structured, com-
plex architectures. Recently DBB-based networks have attracted much atten-
tion [245–249]. Note that the connections between the DBB in a network
can be permanent, leading to chemically cross-linked networks, as well as
transient, giving rise to physical networks. We continue now in the GGS
framework and discuss the case of permanently cross-linked DBB-based net-
works [74].

We follow now the description of [74]. The general approach of Sect. 5.3
of treating complex structures (cells) linked into topologically regular net-
works can be easily extended to the structures discussed here. A DBB based
on a generalized dendrimer, characterized by fc, f , and g, is used as the repeat
unit, see Fig. 34. The main variable here is the number of connections, Mcr,
between neighboring DBB, which can be simply computed as being the total
number of connections stemming from each DBB divided by the number of
its neighboring DBB.

The minimal value of Mcr in networks equals unity, meaning that the net-
work is loosely cross-linked; tighter cross-linked situations, Mcr > 1, are also
possible. Now, the DBB peripheral beads are most prone to serve as connec-

Fig. 34 Portion of a 2-D dendrimer-based polymer network, built from DBB of the third
generation, g = 3, with trifunctional inner branching points, f = 3, and a tetrafunctional
core, fc = 4. The number of connections between the neighboring dendritic blocks, Mcr,
is equal to 2
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tions, given that their functionality inside the dendrimer is less than f . It is
easy to show that a generalized dendrimer has Nper = fc( f – 1)(g–1) peripheral
beads. In the case of a simple hypercubic topological structure, each building
block has 2dlat nearest neighbors, where dlat is the dimensionality. Therefore,
by cross-linking DBB in a symmetric way, one can use up to Nper/2dlat beads
to connect neighboring DBB.

Now, in order to apply the general approach formulated in Sect. 5.3, one
needs to specify the matrices B(int) and B(ext), see Eq. 106. Again follow-
ing [74], we consider the case in which a link between two precursor den-
drimers is established by the elimination of one bead, say, through a dis-
proportionation reaction. As a side remark, we note that other cross-linking
procedures are also possible, such as through the insertion of additional
bonds. Due to the newly-created Mcr connections between each pair of neigh-
boring dendritic cells, each cell now has Mcrdlat beads less than the precursor
dendrimer with Nd beads, Nd being given by Eq. 195. Such a dendritic cell
therefore contains s = (Nd – Mcrdlat) beads, and the matrix B(int) can be built
on the basis of the connectivity matrix of the original, precursor dendrimer
by the removal of Mcrdlat beads. Furthermore, given that there are 2dlat
nearest neighbors to each dendritic cell, there are 2dlat non-vanishing B(ext)

matrices; each of them containing Mcr non-zero elements equal to (– 1), see
Sect. 5.3 for details.

Fig. 35 Reduced storage modulus [G′(ω)] versus the reduced frequency ωτ0 plotted on
double logarithmic scales for 2-D (20× 20) networks based on dendritic blocks with
fc = 3, f = 3, and g = 5. The number of connections, Mcr, (see text) ranges from 1 (loosely
cross-linked) to 12 (fully cross-linked dendrimers without dangling bonds). The [G′(ω)]-
curve of the corresponding individual dendrimer is also displayed
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Applying the method of Sect. 5.3, one can evaluate the viscoelastic be-
havior of dendrimer-based networks and focus on how far the number of
connections between neighboring dendritic blocks, Mcr, affects the dynam-
ics. It was found [74] that increasing Mcr leads to a systematic narrowing
of the region of high frequencies, in which the pure dendrimer-like behav-
ior dominates [74]. For larger Mcr the [G′(ω)]-curves depart earlier from
the corresponding [G′(ω)]-curve of an individual dendrimer, see the [G′(ω)]-
plots for particular network systems presented in Fig. 35. The explanation
is straightforward: the long relaxation times of the individual dendrimers
are controlled by large amplitude motions, which involve whole dendrimer
(sub)branches, see Sect. 8.3 for details. The connections between the den-
dritic blocks hinder these motions. This effect is found to be generic – it does
not depend significantly on the parameters fc, f , and g of the DBB, nor on the
particular type (2-D or 3-D) of underlying regular topological structure into
which the DBB are cross-linked [74]. Thus, the finding that connecting DBB
into a network (by which the mobility of the peripheral DBB monomers is
hindered) leads to a narrowing of their internal relaxation domain is a general
fact, which can be used as a signature for cross-linking.

11
Conclusions

In this article we focused on the use of generalized Gaussian structures (GGS)
to study the dynamics of complex polymer systems. Of particular interest
to us were systems which (because of their underlying symmetry) could be
treated to a large extent analytically. These systems included topologically-
regular polymer networks, polymer networks built from subunits, fractal
polymer networks and gels, dendrimers, hyperbranched polymers, and side-
chain dendritic polymers. As systems of special recent interest we also con-
sidered hybrid systems, which are characterized by two levels of organization;
as examples, we treated polymer networks bearing dendritic wedges and
dendrimer-based polymer networks. The GGS-considerations show that iter-
ative and hierarchical structuring procedures are well reflected both energet-
ically (in the eigenvalue spectra) and in the dynamical features (relaxation).
Many of the dynamical observables discussed here allow us to determine the
structural aspects of polymer materials with complex topologies. Thus, in
many cases the GGS-treatment of particular structures may help us to under-
stand their basic dynamic features, and should be considered as a worthwhile
first stage before moving on to more realistic (and, therefore, more involved)
theoretical models.
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