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ABSTRACT: We present a theoretical study of a new class of polymer materials of much recent
experimental interest: polymer networks bearing dendritic wedges in the middle of long network strands.
We focus on the Rouse dynamics of such cross-linked polymers and perform our study in three steps,
considering first single dendritic wedges, then linear chains bearing dendritic wedges (CBDWs), and
finally networks formed by end-linked CBDWs. Using analytical and numerical calculations we find that
for linear CBDWs increasing the generation number g of dangling dendritic wedges decreases the storage
shear modulus G′(ω) in the low-frequency domain, i.e., makes the large-scale relaxation more rapid. The
zero shear viscosity also decreases with g, indicating a trend opposite to that of dendrimers with small
g. Our findings are in qualitative agreement with recent rheological experimental data on side chain
dendritic polymers. On the contrary, increasing g for dendritic wedges attached to regular networks slows
down the low-frequency relaxation; this goes so far as to lead for large g in the intermediate frequency
domain to a tendency toward a plateau in G′(ω). We relate these effects to the presence in CBDW systems
of the dangling dendritic wedges, which lower the mobility of the linear chains.

1. Introduction

Dendrimer macromolecules display a series of unique
properties, since they possess a regularly monodisperse
branched structure.1-6 This regularity makes them very
attractive for use as building blocks, to obtain complex
polymer materials with new architecture. We mention
here exemplarily side chain dendritic polymers, consist-
ing of linear chains with pendant dendritic groups.7-9

Recently, even more complex polymer structures were
synthesized, namely polyurethane networks bearing
dendritic wedges of different generations.10 In these
networks the dendritic wedges are attached to the
middle of each chain which forms the network.10 The
existence of perfectly branched dangling structures
(such as the dendritic wedges) in polymer networks
renders such systems very interesting for dynamical
studies: One has here the possibility to control directly
the amount of sol fraction in the network by varying
the generation number (i.e. the size of the dendritic
wedges); one may recall that the increase of the size of
the dangling dendritic structures decreases the mobility
of the elastic network strands.

In this paper we study theoretically the dynamics of
networks bearing dendritic wedges and focus on the
Rouse description.11,12 As is well-known, such an ap-
proach is simplified, in that it does not take into account
the excluded volume and the hydrodynamic interactions.
The excluded volume interactions are of importance
especially for the local dynamics of dense polymer
structures; as far as the hydrodynamic interactions are
concerned, we note that the dendrimers become non-
draining spheroids with increasing generation num-
ber.13 Nonetheless, as a first step to understand how
the topology of the complex polymer systems under
study affects their dynamical properties, we prefer to

work in the framework of the Rouse model, while
keeping in mind all its restrictions.

The paper is organized as follows. Section 2 is devoted
to the general description of the model and to the
dynamical features which we are interested in, given
that usual mechanical experiments measure the fre-
quency-dependent components of the complex dynamic
modulus G*(ω), namely the storage, G′(ω), and the loss,
G′′(ω), moduli. In the following sections we develop in
three steps the study of dynamics of polymer networks
made out of chains bearing dendritic wedges: In section
3 we consider the Rouse dynamics of a single dendritic
wedge of arbitrary functionality and generation number.
Section 4 is concerned with the dynamics of un-cross-
linked polymer chains bearing dendritic wedges in their
middle. Here we reproduce qualitatively some dynami-
cal features of un-cross-linked side chain dendritic
polymers, which were found in recent rheological ex-
periments.14 The dynamics of polymer networks consist-
ing of endlinked chains bearing dendritic wedges is
considered in section 5. Given that in the end-linked
network the mobility of a given chain end is hindered
by the other chains at the cross-link point, we consider
first the limiting case of a network in which the cross-
link points (the chain ends) are fully immobile. Then
we turn to the more realistic case we are interested in,
namely we consider side chain dendritic polymers cross-
linked into a regular network. Section 6 ends the paper
with a short summary and conclusions.

2. The Model

As mentioned above, we develop our study of the
dynamics of polymer networks bearing dendritic wedges
in three steps, focusing first on a single dendritic wedge,
then on a chain bearing a dendritic wedge (CBDW)
attached to its middle monomer, and finally on an end-
linked network formed by such CBDWs; see Figure 1.
We assume that all these polymer systems consist of
beads, connected to each other by elastic springs with
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elasticity constant K. This means that we treat the
dynamics of the systems under study in the framework
of the so-called generalized Gaussian structures15-17

(GGS), which represent an extension of the classical
Rouse model.11,12 All beads of the GGS are subject to
the same friction constant ú with respect to an effective
viscous medium, regardless of the specific GGS struc-
ture.

The Langevin equation of motion for the lth bead of
the GGS reads

where Rl(t) is the position vector of the lth GGS bead,
A ) {Alm} is the connectivity matrix of the given GGS
(wedges, CBDWs, networks, etc.), and Ntot is the total
number of beads (monomers) in the GGS under study.
The nondiagonal Alm equal (-1) if the lth and mth beads
are connected and 0 otherwise; Amm equals the number
of bonds emanating from the mth bead. The thermal
noise úwl(t) is assumed to be Gaussian, with <wl(t)> )
0 and <wlR(t)wmâ(t′)> ) 2kBTδlmδRâδ(t - t′)/ú (here R
and â denote the x, y, and z directions).

We focus here on the rheological properties of polymer
networks bearing dendritic wedges. In typical mechan-
ical experiments the complex (shear) modulus G*(ω) is
measured as response to a harmonic strain field.18 This
harmonic strain excitation acts on the macromolecules
in solution indirectly, through the solvent. The shear
modulus G*(ω) is then related to the stress which arises
in the system. Theoretically, this stress may be calcu-
lated using two different methods. The first method
consists of the evaluation of the force per unit area
induced by the interactions between the monomers of
the polymer and the viscous medium (solvent). The
second method is to calculate the additional work
performed by the system due to the friction of the
monomers against the viscous medium. These methods
are widely used standard approaches, and their detailed
description can be found elsewhere.12,19

In this way, one finds for structures governed by the
Rouse dynamics (GGS) that the storage modulus G′(ω)
and the loss modulus G′′(ω) (being the real and the
imaginary component of the complex shear modulus
G*(ω)) are given in very dilute solution by12

and

with C ) νkBT, where ν is the number of polymer
monomers (beads) per unit volume in the GGS under
study (wedge, CBDW, etc.); furthermore the λi are the
eigenvalues of the connectivity matrix A of the given
GGS, and τ0 ) ú/K. In eqs 2 and 3 the vanishing
eigenvalue (denoted by λ1 ) 0) is neglected; it corre-
sponds to the translation of the system as a whole and
does not contribute to the moduli. Note that the factor
2 in the relaxation times τi ) τ0/2λi in eqs 2 and 3 arises
from the second moment of the displacements involved

in computing the stress; see the corresponding deriva-
tion of the expressions for the moduli in ref 12.

Moreover, for concentrated solutions, when entangle-
ment effects are negligible (e.g., for polymers of low
molecular weight), G′(ω) and G′′(ω) are still given by
eqs 2 and 3, in which only the prefactor C changes.18

Given that we are mostly interested in the slopes of
G′(ω) and G′′(ω), we will present our results in terms of
reduced storage and loss moduli, [G′(ω)] and [G′′(ω)],
by setting C ) 1 in eqs 2 and 3.

To conclude this section, one has to emphasize that
for calculating the modulus G*(ω) it suffices to find only
the eigenvalues λi of the connectivity matrix (or the
relaxation times τi) of the system under study, since the
corresponding eigenfunctions do not enter in eqs 2 and
3. This fact simplifies considerably the solution of
dynamical problems for the systems we are interested
in.

3. A Single Dendritic Wedge
We begin by considering the Rouse dynamics of a

single dendritic wedge. If we keep the functionality of
all its monomers fixed, the dendritic wedge differs from
the usual “full” dendrimer in that its core has one main
branch less. In Figure 2 we depict for the functionality
f ) 3 the dendritic wedge with generation number g )
3. The core (central bead) of the dendritic wedge is
numbered by 1 and belongs to generation g ) 0; in
Figure 2 its functionality appears to be (f - 1), since in
the network it will acquire an additional bond, connect-
ing it to a side chain; see Figure 1.

We remark that we consider here as wedges and “full”
dendrimers structures characterized by f and g only.
More general structures are possible, in which the
functionality of the inner branching points, the func-
tionality of the core, and the number of monomers
between different branching points can vary.20,21 The
methods we present here may also be extended to more
general situations; we defer such considerations to
another work.

Figure 1. Polymer systems under the study. Shown are (A)
a single dendritic wedge, (B) a linear polymer chain bearing a
dendritic wedge in its middle (a CBDW), and (C) a regular
polymer network bearing dendritic wedges.

Figure 2. Trifunctional dendritic wedge of third generation,
in which the generations and the beads are numbered.
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Up to now, several theoretical works were devoted to
the theoretical studies of the equilibrium and dynamic
properties of dendrimers.20-32 In addition, other works
concentrated on computer simulations of dendrimers.33-37

Most of the existing theoretical studies on the dynamics
of dendrimers were based on the Rouse and/or Zimm
approaches and focused on the direct diagonalization
of the connectivity matrix with the use of analyti-
cal22,24,27 or numerical methods.28,31,32 We remark that
solving dynamical problems through the direct analyti-
cal diagonalization of the corresponding connectivity
matrixes is often quite cumbersome. Recently, one of
the authors proposed a new method for finding the
eigenvalues (and the corresponding relaxation times) of
“full” dendrimers (in the above sense) without a com-
plicated direct diagonalization.38 Here we will apply this
approach to dendritic wedges of arbitrary functionality
and generation number.

Let us consider a dendritic wedge having as function-
ality f and as generation number g; see the particular
example of Figure 2. The total number of beads in the
dendritic wedge, Nw, reads

The method of finding the eigenvalues (the relaxation
times) of dendritic wedges is based on simplifying the
equations of motion using the topological symmetry of
the systems under study.38 In this respect the recent
work of Cai and Chen27 is also very instructive. They
studied the Rouse dynamics of dendrimers with trifunc-
tional branching points using the direct analytical
diagonalization of the corresponding connectivity matrix
and provided a very clear physical interpretation for the
relaxation times and the normal modes which they
determined. In particular, they found that all types of
motions in the dendrimer can be categorized into two
general groups: (i) motions involving a mobile core; (ii)
motions involving an immobile core.27,38 As we proceed
to discuss, the dendritic wedge preserves much of the
symmetry of the “full” dendrimer, given that only the
functionality of the core is changed. In fact, the eigen-
values of the wedge can be categorized27 and evaluated38

in the same way as the ones of the corresponding “full”
dendrimer.

The description of the method and the detailed
evaluation of the eigenvalues and eigenfunctions of
dendritic wedges are presented in Appendix A. Here we
summarize the results with respect to the eigenvalues.
The eigenvalues λk which belong to normal modes with
a mobile core have the form of eq A8:

Here

See eq A11. This is a set of g nondegenerate eigenvalues.
In addition, one more mode, whose eigenvalue vanishes,
λ ) 0, belongs to this group; it implies (under the
influence of fluctuating forces) the displacement of the
dendritic wedge as a whole.

The next group of motions implies an immobile core.
In the special case when only the core is immobile, the

eigenvalues λk are given again by eq 5, where the ψk
fulfill

See eq A15. It is interesting that eq 7 provides a total
of g distinct solutions only if (g + 1) > xf-1 g, i.e., in
fact, only in three cases, namely for (f ) 3; g ) 1), (f )
3; g ) 2), and (f ) 4; g ) 1). In all other cases, i.e., for
(g + 1) e xf-1 g, eqs 5 and 7 give only (g - 1)
solutions. Then one additional eigenmode of “exponential-
type” appears, whose eigenvalue has the form of eq A17:

Here ψ fulfills eq A18:

In more general cases, in which larger groups of
noncore beads remain immobile, the eigenvalues λk are
still given by eq 5, with ψk obeying eq A21:

Here 0 < n < (g - 1) and n denotes the last generation
in which all beads are immobile. As in the previous case,
eq 10 has (g - n) distinct solutions if (g - n + 1) >
xf-1(g - n). Otherwise, when (g - n + 1) e xf-1(g -
n), there are (g - n - 1) distinct solutions of the form
of eq 10 and one has an additional solution in the form
of eq 8 with ψ obeying

See eq A23. Additionally, there is the (f - 1)(g-1)(f - 2)-
fold degenerate eigenvalue λ ) 1, which corresponds to
the motions of the peripheral beads exclusively, n )
(g - 1). All in all, as shown in Appendix A, we obtain in
this way a total of Nw eigenvalues, i.e., all of them.

These findings allow us to study the dynamic proper-
ties of dendritic wedges in the GGS framework, given
that we derived all the eigenvalues (relaxation times)
of such wedges for arbitrary f and g. We are now in the
position to use this knowledge to compute the relaxation
functions. In Figure 3 we plot the reduced storage,
[G′(ω)], and loss, [G′′(ω)], moduli (eqs 2 and 3 with C )

Nw )
(f - 1)g+1 - 1

f - 2
(4)

λk ) f - 2xf - 1 cos ψk (5)

ψk ) π
g + 1

k with k ) 1, ..., g (6)

Figure 3. Reduced storage modulus [G′(ω)] and loss modulus
[G′′(ω)] plotted in double logarithmic scales versus the reduced
frequency ωτ0. Shown are results for single dendritic wedges
with generation number g ranging from 4 to 7. The functional-
ity of the wedges, f, is equal to 3.

sin(g + 1)ψk ) xf - 1 sin gψk (7)

Λ ) f - 2xf - 1 cosh ψ (8)

sinh(g + 1)ψ ) xf - 1 sinh gψ (9)

sin(g + 1 - n)ψk ) xf - 1 sin(g - n)ψk (10)

sinh(g - n + 1)ψ ) xf - 1 sinh(g - n)ψ (11)
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1) for single dendritic wedges with trifunctional branch-
ing points (f ) 3); in the figure we vary g, the generation
number, from 4 to 7. Figure 3 indicates nonscaling forms
for [G′(ω)] and [G′′(ω)] in the intermediate frequency
domain; i.e., they do not follow power-law, ωR, behaviors.
Such nonscaling patterns for [G′(ω)] and [G′′(ω)] are
typical for dendrimers (see, for instance, ref 31). That
this is also here the case follows from the arguments
given above, which stressed the close behavior of den-
drimers and dendritic wedges. The spectra of a den-
drimer and of its corresponding wedge differ only little;
only g eigenvalues have different values. The other
eigenvalues belong both to the dendrimer and to the
wedge and differ only in their degeneracy.

To conclude this section, it is very instructive to
estimate the minimal nonvanishing eigenvalue (corre-
sponding to the maximal relaxation time) of the den-
dritic wedge. We present such an estimation in Appen-
dix B. It turns out that the minimal, nonvanishing
eigenvalue of a dendritic wedge, λmin, behaves for large
g as38

See eq B6. This eigenvalue is the same for the “full”
dendrimers and for the dendritic wedges because it
corresponds to a mode in which the largest dendritic
branches move as a whole with respect to each other.27,38

In the case f ) 3, eq 12 leads to the relation λmin ∼
2-(g+1), as found by Cai and Chen for dendrimers with
trifunctional branching points.27

4. Linear Polymer Chains Bearing Dendritic
Wedges

In this section we focus on un-cross-linked side chain
dendritic polymers in solution and study the dynamics
of linear polymer chains bearing dendritic wedges
(CBDW); see Figure 1B. Again we treat each CBDW as
a GGS, so that the CBDW dynamics is again governed
by eq 1. Here we cannot proceed analytically any more
and use numerical methods39 for the diagonalization of
the connectivity matrix A.

The linear chain contains Nch beads; for convenience
we assume that Nch is an odd number, so that a
dendritic wedge attached to its central bead divides the
chain into two identical halves. The wedge is character-
ized by the functionality f and by the generation number
g or, alternatively, through eq 4, by its total number of
beads Nw. An interesting question here pertains to the
relationship between the sizes of the chain and of the
wedge. As it is well-known,11,12 the longest relaxation
time of a Rouse chain, τmax

(ch), is proportional to Nch
2,

where Nch is the number of beads in the chain. The
longest relaxation time of a dendritic wedge, τmax

(w), is
for large g proportional to (f - 1)g+1; see eq 12. It is
evident that in the case of rather short linear chains
(i.e. for τmax

(w) J τmax
(ch)) the relaxation of the linear

chain will be strongly masked (screened) by the relax-
ation of the dendritic wedge, especially so because of
the high degeneracy of the modes of the wedge in
contrast to the situation for linear chains. Thus, the case
of rather short linear chains is not interesting, because
one can expect here an almost pure dendrimer-like
behavior.

We thus will focus on linear chains which are quite
long compared to the dimensions of the dangling den-

dritic wedge, i.e., τmax
(ch) . τmax

(w). This means that the
number of beads in the chain Nch must be much larger
than (f - 1)(g+1)/2. In the following we will compare
qualitatively our theoretical results with rheological
data obtained for side chain dendritic polymers;14 in ref
14 the polymers consisted of a polyurethane main chain
and of polyether wedges, of second, third, and fourth
generations. In our calculations we prefer to fix the
length of the linear chain and to vary for dendritic
wedges with f ) 3 the generation number from g ) 2 to
g ) 6. Hence, our linear chain considered must have
more than (f - 1)(g+1)/2 ) 27/2 ≈ 12 monomers. In the
following we set Nch ) 51.

In Figure 4 we present the results of our numerical
calculations for the reduced storage, [G′(ω)], and loss,
[G′′(ω)], moduli of single linear chains (Nch ) 51) bearing
dendritic wedges (f ) 3 and 2 e g e 6). We display both
the purely viscous behavior at very low frequencies,
where the dynamic moduli obey power laws,12 namely
[G′(ω)] ∼ ω2 and [G′′(ω)] ∼ ω (see eqs 2 and 3 for ωτ0 ,
1), and also the more interesting, crossover domain at
intermediate frequencies. One can see from Figure 4
that in the terminal range of small frequencies [G′(ω)]
and [G′′(ω)] decrease with increasing g. This result is
in qualitative agreement with the experimental data14

and can be explained as follows: At high frequencies
(i.e. on small length scales) the CBDW dynamics is
driven by the relaxation of the dendritic wedge, because
of the multiple degeneracy of its relaxation times (eigen-
values), and the relaxation behavior of the linear chain
is hidden. In contrast, the CBDW dynamics in the low-
frequency domain is mainly governed by the relaxation
of the linear chain. In the case of long linear chains (just
what is displayed in Figure 4), the internal relaxation
of the wedge is completed on large time scales; in this
region the wedge behaves as a “massive” particle having
an overall friction constant of Nwú (one may note that
the term “massive” refers here to the friction, since in
the Langevin framework, see eq 1, no inertial mass is
involved).

In the low-frequency domain the CBDW can thus be
viewed as a linear chain with a “massive” particle (in
the above sense) attached to it. The friction constant of
this particle, Nwú, strongly increases with the genera-
tion number g (see eq 4); therefore, the particle tends
to be more and more immobile (damped) with increasing
g. This, in turn, hinders more and more the mobility of
the central monomer of the chain to which the “massive”

λmin ∼ Λ(1) )
(f - 2)2

(f - 1)(g+1)
(12)

Figure 4. Reduced storage modulus [G′(ω)] and loss modulus
[G′′(ω)] plotted in double logarithmic scales versus the reduced
frequency ωτ0. Shown are results for linear polymer chains of
Nch ) 51 beads bearing dendritic wedges with f ) 3 and where
g ranges from 2 to 6.
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particle is attached and therefore inhibits the excitation
of the large-scale asymmetric modes of the chain,
leading to a speed-up of the terminal relaxation. As soon
as the condition τmax

(ch) . τmax
(w) holds, the longest

CBDW relaxation time gets to be independent of g and
equal to the maximal relaxation time of the underlying
linear chain, τmax

(ch). The reason is that for all g the
normal mode related to the longest relaxation time (the
smallest nonvanishing eigenvalue) is symmetric with
respect to the central bead to which the wedge is
attached; it describes the stretching of the chain at its
ends, so that the central bead stays immobile; see e.g.
ref 40. Furthermore, we note from Figure 4 that the
storage modulus, [G′(ω)], is more sensitive to g than the
loss modulus, [G′′(ω)].

In continuation we evaluate numerically, for very
dilute solutions, the zero shear viscosity η′(0). In general
the shear viscosity η′(ω) is related to G′′(ω) through η′(ω)
) G′′(ω)/ω; see e.g. ref 18. From eq 3 it follows that

Now η′(0) for side chain dendritic polymers was deter-
mined experimentally (see ref 14); there ν stood for our
ν/Ntot. From eq 13 η′(0) is proportional to the sum of all
the finite relaxation times of the system under study.
In Figure 5 we plot our numerical results of η′(0). We
consider both single dendritic wedges with f ) 3 and g
) 1, 2, ..., 6 and linear chains (Nch ) 51) with such
wedges. In the GGS framework used here we find that
in the g range considered the η′(0) of dendritic wedges
increases with g. However, for linear CBDW we find the
opposite trend, namely that η′(0) decreases with g; see
Figure 5. This stems from the fact that the main
contribution to η′(0), see eq 13, is due to the long
relaxation times (or, stated differently, to the small
eigenvalues). Since in the low-frequency domain the
relaxation gets to be more rapid with increasing g, the
corresponding long relaxation times τi decrease with g,
so that η′(0) also decreases. This effect is indeed
confirmed by rheological experiments14 on side chain
dendritic polymers, with 2 e g e 4.

5. End-Linked Polymer Networks Bearing
Dendritic Wedges

In this section we consider the dynamics of polymer
networks, obtained by cross-linking CBDWs. We focus
on end-linked networks; i.e., the CBDWs are cross-

linked at the chain’s ends (see Figure 1C). Through the
linkage into the network, the ends of the CBDWs loose
part of their mobility, since their motion gets hindered
by the other CBDWs.

Fixed-Chain-Ends Model. At first, we consider a
limiting case, namely a single CBDW, whose chain ends
are fixed. Physically, it corresponds to the freezing of
the motion of the cross-links (e.g., because the time
scales of motion of the network chains and of the cross-
links separate41,42). As before, we treat the dynamics of
such a CBDW through the direct numerical diagonal-
ization of the corresponding connectivity matrix A; see
eq 1. Now, following the ideas of Mooney,18,42 the ends
of the chain are attached by additional links (springs)
to fixed points: this increases the corresponding two
diagonal elements of A by 1. The new connectivity
matrix has then Ntot positive eigenvalues, and the sums
in eqs 2 and 3 run over all of them. In Figure 6 we plot
[G′(ω)] for CBDWs with fixed ends, whose chains have
length Nch ) 51 and whose wedges have f ) 3; further-
more we let for the wedges g range between 4 and 7.
These results can be compared directly to those for un-
cross-linked CBDWs; see Figure 4. First we observe for
log(ωτ0) > -2 that the behavior for free CBDWs and
for CBDWs with fixed ends is very similar: this means
that in this range of frequencies fixing the chain’s ends
does not affect the dynamics. On the other hand, at
lower frequencies the [G′(ω)] decay becomes slower for
cross-linked CBDWs than for free CBDWs. This leads
for large g even to a tendence of forming a plateau
around log(ωτ0) ∼ -2.5; see Figure 6. The width of this
quasi-plateau region increases with increasing g, so that
the terminal, ω2 decay of [G′(ω)] shows up at lower
frequencies for larger g; see Figure 6.

We compare these results to our model of a linear
chain with fixed ends and a “massive” particle attached
to its center; see Figure 7. Our numerical results are
given in Figure 8, where we plot the [G′(ω)] curves by
taking in eq 2 Ntot ) Nw + Nch both for the CBDW with
fixed ends and for the chain with the “massive” particle.
For long linear chains and low frequencies we expect
[G′(ω)] to follow the trend of Figure 6, since at small ω
the relaxation of the chain is still in progress when the
wedge’s relaxation has ended. As can be inferred by
comparing Figures 6 and 8, this is borne out nicely.
Furthermore, our simplified model reproduces quite well
the flattening of [G′(ω)] found for linear CBDWs with
fixed ends.

Figure 5. Reduced zero shear viscosity η′(0)/νkBTτ0 plotted
as a function of g. Shown are results for single dendritic
wedges (open circles) and for the CBDW system given in
Figure 4 (filled circles).

η′(0) ) νkBT
1

Ntot
∑
i)2

Ntot τ0

2λi

) νkBT
1

Ntot
∑
i)2

Ntot

τi (13)

Figure 6. Reduced storage modulus [G′(ω)] plotted in double
logarithmic scales versus the reduced frequency ωτ0. Shown
are results for linear polymer chains (of Nch ) 51 beads), whose
ends are fixed; the chains carry attached wedges with f ) 3
and g ranging from 4 to 7.
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The tendency of [G′(ω)] to form a plateau, see Figure
6, implies a very slow relaxation in the corresponding
frequency domain. After most internal relaxation proc-
esses are finished, there remain a few modes connected
to large-scale motion of the center of mass of the CBDW
with fixed chain ends. Note that now, due to the fixing
of the ends, its relaxation time is finite (i.e. λ1 * 0),
which is in contrast to the un-cross-linked situation. For
large g the low-frequency relaxation of the linear chain
in the CBDW is dominated by the presence of an almost
immobile, “massive” dendritic wedge (Nw . 1). Now this
relaxation ends at τmax

(ch)/4, where τmax
(ch) is the maximal

relaxation time of the chain. Note that, in contrast to
the case of free CBDWs (discussed in the previous
section), the fixing of the chain’s ends leads here (given
that the central monomer is almost immobile) to a low-
frequency relaxation determined by the two (independ-
ent) halves of the original chain. An even slower
relaxation (the terminal one) involves also the center
of mass of the CBDW, so that the “massive” wedge also
participates in this motion; this introduces an additional
term of Nwú in the global friction involved and, there-
fore, in the corresponding relaxation times. We hence
relate the very interesting, flattening feature found in
Figure 6 to the difference between the longest relaxation
time of the whole CBDW system, τmax, and the longest
relaxation time of half of the underlying linear chain
involved, τmax

(ch)/4.
End-Linked Regular Networks of CBDWs. In the

subsection above we considered the limiting case of
CBDWs with fixed ends, corresponding to a network
with fully immobile cross-links. Under realistic condi-
tions the mobility of the cross-links is certainly inter-
mediate between completely fixed and completely free.
In this way the cross-links lead to large-scale, coopera-

tive modes. Such collective relaxation phenomena are
less pronounced in un-cross-linked polymers, where they
may arise due to entanglements. To depict the realistic
situation of mobile cross-links, we proceed following a
model previously studied by us;43,44 it is based on a
regular lattice decorated with complex subunits. Here
we take the subunits to be CBDWs; see Figure 1C.

The motivation of the model of refs 43 and 44 (see
also ref 45) was to study the dynamics of disordered,
highly inhomogeneous polymer networks. The model
reflects two aspects often found in such networks,
namely that the local structure is rather disordered,
whereas the large-scale structure is rather homoge-
neous: one hence builds the network from subunits,
which are connected into a regular structure (say a 2D
square lattice). The inner structure of the subunits can
be then varied; for ease of computation, however, each
realization of the disordered network utilizes a (possibly
random, but once chosen, unique) subunit, repeated
indefinitely. The regularity of this model allows one then
to simplify the problem of finding the eigenvalues (i.e.
the relaxation times) of the network. The main idea is
that the Langevin equations for such GGSs have a
topological symmetry mathematically very akin to the
translational symmetry of perfectly regular lattices.43,44

We are therefore able to reduce the determination of
the normal modes of the whole network to the diago-
nalization of relatively small matrixes. These matrixes
are defined by the topology of the repeating elements
(subunits) of the lattice; the large-scale symmetry is
taken into account by phase factors corresponding to
appropriately chosen (periodic) boundary conditions.43,44

We now return to our cross-linked CBDWs system
and model it in the spirit expressed above, by taking
the CBDWs to be the subunits (building blocks) of a
regular lattice. We have now to choose a lattice, and
we hence opt for 2D square networks formed from
CBDWs (see Figure 1C). We recall that such networks
are 2D only in the sense of the connectivity of the cross-
links; the networks move in the 3D Cartesian space like
fishing nets in water. The question is in how far our
results are influenced by the choice of the lattice; it
turns out that the lattice influences only the low-
frequency domain, where for instance one has [G′(ω)]
∼ ω3/2 for three-dimensional cubic46,47 and [G′(ω)] ∼ ω
for two-dimensional square48,49 networks. On the other
hand, the most interesting relaxation effects occur in a
frequency domain which is intermediate between the
intra-subunit modes and the lattice modes, as previously
shown by us43,44 in the case when the subunits are
“small-world-networks”.

In Figure 9 we present the results of our numerical
calculations for 2D networks (20 × 20 cross-links) built
from CBDWs. Here we took Nch, the number of mono-
mers in the linear chains between the cross-links, to be
51; we also set f ) 3 for the dendritic wedges. To have
a more pronounced effect, we consider dendritic wedges
of large generation numbers and take g to be 5, 6, and
7. As can be seen in Figure 9, the relaxation features
observed in the previous subsection for CBDWs with
immobile cross-links carry over to the regularly end-
linked networks considered here. For large g we again
find that [G′(ω)] shows a tendency to form a plateau at
intermediate frequencies; this behavior is followed at
low frequencies by the power-law relaxation due to the
lattice. As mentioned above, such a plateaulike domain
stems from a low number of modes in the relaxation

Figure 7. Simplified model proposed to reproduce the ter-
minal region of the relaxation found in Figure 6: a linear chain
with fixed ends, to which a “massive” particle is attached. See
text for details.

Figure 8. Reduced storage modulus [G′(ω)] plotted in double
logarithmic scales versus the reduced frequency ωτ0. Shown
are results for a linear CBDW whose ends are fixed (solid line).
The results are compared to those for the model of Figure 7
(dashed line). Here Nch ) 51, f ) 3, and g ) 6.
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spectrum of CBDWs with fixed ends; this domain
extends from the longest relaxation time of half of the
linear chain, τmax

(ch)/4, to that of the same chain bearing
a dendritic wedge, τmax. This picture is very different
from that encountered for regular networks built from
linear Rouse chains: in such a situation the longest
relaxation times τmax

(ch) of the chains between cross-links
is equal to the minimal relaxation time of the regular
lattice. As a result, the relaxation spectrum is continu-
ous and no plateau appears.46-49 Hence, the intermedi-
ate plateau-type behavior found in Figure 9 is due to
the large dangling structures (wedges), which consider-
ably slow the relaxation at intermediate frequencies.

We conclude with some remarks on the low-frequency
relaxation behavior, which in Figure 9 sets in at around
ωτ0 = 10-3.5. In this region [G′(ω)] is determined by the
large-scale connectivity of the network; here it displays
the power-law behavior [G′(ω)] ∼ ω, typical for 2D
lattices. Now, given the disorder found in randomly
cross-linked networks, the relaxation character imposed
here by the choice of a 2D regular lattice is debatable;
experimentally [G′(ω)] may well show up a different
form at low frequencies. On the other hand, a precise
analysis of [G′(ω)] at such frequencies requires a good
knowledge of the topological, large-scale network struc-
ture, combined with very careful measurements in a
frequency domain of difficult access, both aspects being
worth further studies in the future.

6. Conclusions

In this paper we presented a theoretical study of a
new class of polymer materials, namely polymer net-
works bearing dendritic wedges.10 In such networks the
mobility of the elastic network strands is directly
affected by changes in the generation number of the
dangling dendritic structures. Given that our goal was
to determine the influence of the dendritic wedges on
the mechanical characteristics (such as the storage and
the loss moduli) of the networks to which they are
attached, we concentrated here on the Rouse dynamics
of such cross-linked polymers. We performed our study
in three steps, considering sequentially single den-
dritic wedges, linear chains bearing dendritic wedges
(CBDWs), and end-linked polymer networks formed by
such CBDWs.

On the basis of the previous works in the field,27,38

we calculated analytically the set of relaxation times

for single dendritic wedges of arbitrary functionality f
and generation number g. In particular we showed that
the relaxation spectrum of the dendritic wedge differs
from that of its related, “full” dendrimer only in the
values of g distinct relaxation times; the corresponding
modes involve namely all the monomers of the structure
and differ in symmetry between wedge and dendrimer.
All other relaxation times are the same both for the
dendritic wedge and for the dendrimer, the difference
residing only in the degeneracy of these modes.

Using numerical methods, we then calculated the
dynamics of linear CBDWs. We found that increasing
the size of the associated dangling dendritic structures
decreases the dynamic shear modulus in the low-
frequency domain, i.e., renders the large-scale relax-
ation of the CBDWs more rapid. The CBDW's zero shear
viscosity also decreases with g, a trend opposite to that
of dendrimers with small g. These findings are in
qualitative agreement with recent rheological data on
side chain dendritic polymers.14 Physically these fea-
tures are due to the fact that a “massive” dendritic
wedge hinders the mobility of the central monomer of
the linear chain, inhibiting the large-scale normal modes
of the chain which are asymmetric with respect to the
chain’s center.

On the contrary, increasing g slows down the low-
frequency relaxation of CBDWs cross-linked into regular
networks. Furthermore, for g large a tendency toward
a plateau behavior shows up in the intermediate
frequency domain of the storage modulus G′(ω). In this
domain the networks’ dynamics is mainly determined
by the internal relaxation of the chains with wedges.
Due to the low mobility of the chains’ ends (which are
hindered by the network), the relaxation spectrum of
CBDWs networks has only very few modes in the range
extending between the longest relaxation time of the
underlying linear chain and that of the corresponding
CBDWs with fixed ends.
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Appendix A
Here we present the determination of the eigenvalues

and eigenfunctions of dendritic wedges.
(i) Mobile Core. When the central bead (core) is

mobile, all the beads of the dendrimer are involved in
the motion.27,38 On the basis of the topological architec-
ture of the dendritic wedge (each inner bead is connected
with one bead from the previous generation and (f - 1)
beads from the next generation), the Langevin equations
of motion for the inner beads can be rewritten as follows
(cf. eq 1):

Here Rj,m(t) is the position vector of the mth bead of

Figure 9. Reduced storage modulus [G′(ω)] plotted in double
logarithmic scales versus the reduced frequency ωτ0. Shown
are results for 2D regular polymer networks (20 × 20 cross-
links) bearing dendritic wedges of the fifth, sixth, and seventh
generations. Here Nch ) 51 and f ) 3.

ú
dRj,m(t)

dt
+ K[fRj,m(t) - Rj-1,n(t) - ∑

l)1

f-1

Rj+1,l(t)] ) 0

(A1)
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generation j, where the index j for the inner beads lies
in the range 0 < j < g (j ) 0 corresponds to the core),
and Rj-1,n(t) and Rj+1,l(t) (l ) 1, ..., f - 1) correspond to
the locations of the nearest neighbors to Rj,m(t). We have
simplified eq A1 by setting zero on its right-hand side.
The justification is that we are interested only in linear
relations involving the normal modes; in these terms
any dependence on the wl(t) disappears after thermal
averaging.

To solve eq A1 we use a normal mode treatment12,46,47

and look for solutions having the form of sums of normal
modes Pk(j, m; t), which have a simple time behavior
Pk(j, m; t) ) Πk(j, m) exp[-λkt/τ0]:

Here τ0 ) ú/K is the characteristic relaxation time of
the system, Ck are j-independent constants, λk are the
eigenvalues, and Πk(j, m) are the eigenfunctions of eq
A1. The relaxation times τk are uniquely determined by
the eigenvalues λk through τk ) τ0/λk. Inserting eq A2
into eq A1 leads to

We proceed now under the key assumption that the
normal modes can be characterized by motions involving
one “root” bead and all of its descendants of higher
generations. For such a subwedge having as ancestor
the “root”, beads which belong to the same generation
move in the same manner.38 Thus, if the central core
moves, i.e., is the “root” one has Πk(j, m) ) Πk(j) for all
the beads of generation j, see ref 38 and also Figure 3
of ref 27. The justification for the key assumption is that
it indeed allows us to find all the eigenvalues. Using it
eq A1 simplifies to

Note that one has immediately Πk(j) ) constant and λk
) 0 as a solution of eq A4; this zero eigenvalue λ ) 0
implies (under the influence of fluctuating forces) the
displacement of the dendritic wedge as a whole. For the
remaining modes it is convenient to symmetrize eq A4
using the substitution Πk(j) ) (f - 1)-j/2Φk(j); one attains
the following form:38

Equation A5 holds for all inner beads, 0 < j < g. The
symmetrized equations of motion at the wedge’s bound-
aries, i.e., for j ) g (peripheral beads) and for j ) 0 (core),
are

and

Note that the equation of motion for the core, eq A7,
represents the only distinction between the “full” den-
drimer38 and the dendritic wedge considered here.

As it will be demonstrated below, the eigenfunctions
Φk(j) turn out to be linear combinations of the functions
Φk

c(j) ) cos jψk and Φk
s(j) ) sin jψk, where ψk play the

role of phase shifts. It is now a simple matter to verify
that Φk

c(j) and Φk
s(j) satisfy eq A5 for the eigenvalue:38

Equations A6 and A7 fix now the form of Φk(j). It is
namely easy to check that the linear combination

i.e.

solves eqs A6 and A7 when ψk has the form

As a result we have determined through eqs A8 and
A11 g linearly independent solutions for which Φk(0) *
0, i.e., for which the core is mobile. Including the
eigenvalue λ ) 0 we hence have

distinct eigenvalues (i.e. relaxation times). We close this
point by noting that here the set of nonvanishing
eigenvalues differs from what is found for a “full”
dendrimer.38 This is due to the fact that the core, which
has a different functionality in the dendrimer than in
the wedge, is involved in the motion.

(ii) Immobile Core. The next group of motions we
consider implies an immobile core.27,38 In contrast to the
previous case, here one can expect for the dendritic
wedges the same set of relaxation times as for the
dendrimers. The only difference will consist in the
degeneracy of these modes. For instance, if a bead next
to the core is mobile, the degeneracy of the eigenvalues
will be (f - 2)-fold, as compared to (f - 1)-fold for the
“full” dendrimers.38 The reason is that one can choose
as eigenmodes those in which most of the neighboring
beads of the core and their descendents are immobile,
so only two neighboring beads (and their subwedges)
move against each other.27 These beads act as “roots”.
Now focusing on such one “root”, one can pick for it
exactly (f - 2) different partner “roots”, by which one
obtains a set of corresponding, (f - 2) linearly independ-
ent eigenmodes. It is then a simple matter to verify that
the other eigenmodes of this class follow by a linear
operation (a subtraction) from the members of the set.27

Thus, when the core is immobile, the problem turns
(due to the symmetry of the system) into that of
separated, mobile subwedges. On each subwedge the
symmetrized equations of motion for the inner beads,
eq A5, are not changed. Moreover, as we proceed to
show, the eigenfunctions will have the form Φk

s(j), so
that eq A8 again holds. Furthermore, eq A6 for the
peripheral beads also stays as before. What changes,
however, is eq A7, which is the symmetrized equation
of motion at the inner boundary. To fix the ideas let us

Rj,m(t) ) ∑
k

CkPk(j, m; t) )∑
k

CkΠk(j, m) exp[-λkt/τ0]

(A2)

(-λk)Πk(j, m) + [fΠk(j, m) - Πk(j - 1, n) -

∑
l)1

f-1

Πk(j + 1, l)] ) 0 (A3)

(-λk)Πk(j) + [fΠk(j) - Πk(j - 1) -
(f - 1)Πk(j + 1)] ) 0 (A4)

(-λk)Φk(j) + fΦk(j) - xf - 1[Φk(j + 1) +
Φk(j - 1)] ) 0 (A5)

(-λk)Φk(g) + Φk(g) - xf - 1Φk(g - 1) ) 0 (A6)

(-λk)Φk(0) + (f - 1)Φk(0) - xf - 1Φk(1) ) 0 (A7)

λk ) f - 2xf - 1 cos ψk (A8)

Φk(j) ) (xf - 1 cos ψk - 1)Φk
s(j) +

xf - 1 sin ψk Φk
c(j) (A9)

Φk(j) ) xf - 1 sin(j + 1)ψk - sin jψk (10)

ψk ) π
g + 1

k with k ) 1, ..., g (A11)

Nλ
(1) ) g + 1 (A12)
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consider the case that beads of the first generation are
mobile, whereas the core is immobile. In this case eq
A7 is replaced by38

and eq A5 holds for j ) 1, ..., g. It is now a simple matter
to verify that the functions

where the ψk fulfill

solve eqs A6 and A13 for λk given by eq A8.
Now we turn to show that the number of different

eigenvalues which follow from eqs A8 and A15 is either
(g - 1) or g. Since ψk ) 0 leads to the trivial solution
Φk(j) ≡ 0 and since through eq A8 the eigenvalues λk
are determined by cos ψk, we must restrict the phase
shift ψk to an interval, e.g. to 0 < ψk < π; all other ψk
reproduce in eq A8 mod π the same λk.

Graphically, the number of solutions ψk of eq A15
corresponds to the number of crossings of the curves y1

) sin(g + 1)x and y2 ) xf-1 sin gx inside the interval
[0, π]. Now y2 crosses at xm ) mπ/g the x axis and these
crossings divide the interval [0, π] into g segments.
Evidently, y1(xm) * 0 for 1 e m e (g - 1), and there is
a change of sign between consecutive y1(xm). It follows
that within each internal segment y1(x) changes sign
once, whereas y2(x) keeps its sign unchanged and equals
zero at the segment’s ends. Hence y1(x) and y2(x) cross
each other inside each internal segment. The two
external segments require more care, since for them
y1(x0) ) 0 ) y1(xg). Now, in the segment [xg-1, xg] the
functions y1(x) and y2(x) have mainly different signs, the
region of equal signs being concentrated close to xg-1;
this, together with y2(xg-1) ) 0 and y1(xg-1) * 0 again
guarantees a crossing. The situation is different for
[0, x1], where y1(x) and y2(x) have mainly equal signs.
Then the existence of a crossing point depends on
whether one has y1(x) > y2(x) for x close to zero or not,
i.e., on the slopes of the curves at x ) 0; a crossing exists
only for (g + 1) > xf-1 g. Summarizing, we find for
(g + 1) > xf-1 g a total of g distinct solutions of eqs A8
and A15; otherwise the number of distinct solutions is
(g - 1). Note that the condition (g + 1) > xf-1 g is
fulfilled only in a few cases, namely, for f ) 3 with
g ) 1 and g ) 2 and for f ) 4 with g ) 1. For all other
values of the system’s parameters we find, on the basis
of eq A8, (g - 1) eigenvalues whose eigenmodes are
periodical functions of j.

Given that the linear system of equations given by
eqs A5, A6, and A13 has g solutions, for (g + 1) e

xf-1 g one eigenmode must differ from eq A14. In-
deed, one can verify readily that the eigenfunction38

fulfills eq A5 for

It also fulfills eq A13, whereas eq A6 requires in addition
that also

holds. It is easy to see (for instance, again by means of
a simple drawing) that, apart from the trivial solution
ψ ) 0, eq A18 has a single additional solution ψ if and
only if (g + 1) e xf-1 g. In this way we have in all
cases g different eigenvalues. Note that here one has
two sorts of normal modes: The first sort is given by
periodic-type modes in space, see eqs A8, A14, and A15,
and is related to the internal relaxation inside the given
wedge’s subbranch. In contrast, the second sort has an
exponential-type normal mode in space, see eqs A16,
A17, and A18, which corresponds to the motion of the
whole subbranch with respect to the others (under the
condition of an immobile core). Taking now into account
also the (f - 2)-fold degeneracy discussed above, we
obtain a total of (f - 2)g eigenvalues for modes where
the core is immobile but where next neighbors to the
core move.

We now turn to the general case which allows larger
groups of noncore beads to stay immobile and let n
denote (with n < (g - 1)) the last generation in which
all beads are immobile. One may note that the case n
) 0 was just discussed. This last generation contains
(f - 1)n immobile beads, and we focus on a particular
one, to which (f - 1) mobile beads are attached. As
before, the combination of (f - 1) subwedges implies a
(f - 2)-fold degeneracy, so that the total degeneracy is
now (f - 1)n(f - 2)-fold, with n∈ {1, ..., g - 1}.

Now for Φk(j) ≡ 0 (with 0 e j e n) and Φk(n + 1) * 0,
eq A5 holds for n < j < g, eq A6 stays unchanged, and
eq A13 is replaced by

This leads, by a simple reinterpretation of eqs A14 and
A15, to the following set of eigenfunctions:38

where the eigenvalues are given by eq A8 and the ψk
have to fulfill

As before, eq A21 has in the interval 0 < ψk < π
exactly (g - n) distinct solutions if (g - n + 1) >
xf-1(g - n). Otherwise, when (g - n + 1) e xf-1(g -
n), there are (g - n - 1) distinct solutions of the form
of eq A20 and one has an additional solution in the form
of eqs A16 and A17, where now

whose eigenvalue is given by eq A17. The additional
condition corresponding to eq A18 reads now

The last equation has an unique nontrivial solution if
and only if (g - n + 1) e xf-1(g - n). All in all, taking
into account the degeneracies, we find here a total of
(g - n)(f - 2)(f - 1)n eigenvalues.

Finally, we consider the special case n ) (g - 1), in
which only the peripheral monomers are able to move.

(-λk)Φk(1) + [fΦk(1) - xf - 1Φk(2)] ) 0 (A13)

Φk
s(j) ) sin jψk with j ) 1, ..., g (A14)

sin(g + 1)ψk ) xf - 1 sin gψk (A15)

Φ(j) ) sinh jψ (A16)

Λ ) f - 2xf - 1 cosh ψ (A17)

sinh(g + 1)ψ ) xf - 1 sinh gψ (A18)

(-λk)Φk(n + 1) + [fΦk(n + 1) - xf - 1Φk(n + 2)] ) 0
(A19)

Φk
s(j) ) sin(j - n)ψk (A20)

sin(g + 1 - n)ψk ) xf - 1 sin(g - n)ψk (A21)

Φ(j) ) sinh(j - n)ψ (A22)

sinh(g - n + 1)ψ ) xf - 1 sinh(g - n)ψ (A23)
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Here, given that Φk(g - 1) ) 0, we have directly from
eq A6

Equation A24 has the unique solution λ ) 1, which is
(f - 1)g-1(f - 2)-fold degenerate.

We now calculate Nλ
(2), the total number of eigen-

values (relaxation times) for all normal modes in which
the core is immobile. Summarizing the discussion, and
including also the case n ) 0, we have for each n ∈ {0,
..., g - 1} exactly (g - n) distinct eigenvalues, which
are each (f - 2)(f - 1)n-fold degenerate. Hence

where in the last equation we used eq 4.
Summing up now the number of eigenvalues found,

we have from eqs A12 and A25

which proves that we have indeed found all the eigen-
values (relaxation times). As it should be, Nλ equals Nw,
the total number of monomers (beads) of the dendritic
wedge.

Appendix B
Here we present the evaluation of the minimal

nonvanishing eigenvalue (corresponding to the maximal
relaxation time) of the dendritic wedge. It is easy to see
from eq 5 that for both types of modes (which involve
either a mobile or an immobile core) the eigenvalues
given by eq 5 are bounded from below by λmin

(cos) )
f - 2xf-1, which for f g 3 (note that nontrivial
dendrimers have f g 3) is always positive; furthermore
λmin

(cos) does not depend on g. As we proceed to show, in
general there are further nonvanishing eigenvalues of
the wedge, which lie lower than λmin

(cos); they stem from
eq 8, where ψ follows from eq 9.

Using the new variable z ) exp ψ, eq 9 reads (zg+1 -
z-g-1)/(zg - z-g) ) xf-1, which we prefer to rewrite as

From the solution z of eq B1 the eigenvalue Λ follows

by rewritting eq 8. For large g one can obtain z
iteratively from eq B1. Evidently, a starting point
(g f ∞) is z(0) ) xf-1, from which, with eq B2, follows

A better solution to z (to order z-2g = (f - 1)-g) is
obtained by inserting z(0) into the right-hand side of eq
B1; it leads to this order to

which, inserted into eq B2, gives to this order

Note that Λ(1) decreases exponentially with g.
Furthermore for modes which involve immobile non-

core beads, see eqs 8 and 11, one has an expression
similar to Λ(1) for the corresponding eigenvalue, where
g in eq B5 is replaced by (g - n) with n ∈ {1, ..., g - 1}.
Thus, it follows that the minimal, nonvanishing eigen-
value for the wedge, λmin, behaves for large g as38

Physically, the smallest eigenvalue λmin (the longest
relaxation time) corresponds to a mode in which the
largest dendritic branches move as a whole with respect
to each other.27,38

References and Notes

(1) Tomalia, D. A.; Naylor, A. M.; Goddard, W. A. Angew. Chem.,
Int. Ed. Engl. 1990, 29, 138.

(2) Moreno-Bondi, M. C.; Prelana, G.; Turro, N. J.; Tomalia, D.
A. Macromolecules 1990, 23, 910.

(3) Hawker, C. J.; Fréchet, J. M. J. J. Am. Chem. Soc. 1990, 112,
7638.
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