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Introduction

Dendrimers are man-made, synthetic polymers character-

ized by a well-defined, unidisperse, molecular architecture.

Their unique properties derive from their regular structure,

which starts by growing from a central core f branches; in the

next generation, the process continues by growing (f� 1)

branches from each site added in the previous generation.

The process stops then after g generations.[1–11] The interest

in dendrimers is also due to the wide range of applications

suggested for them:[12–15] these extend from using them as

units for supramolecular assemblies, as laser-printing

toners and as biological agents. In fact, one of the most

exciting ideas involves the use of dendrimers in biological

host-guest systems, say for the delivery of DNA into

cells.[16] In our field, dendrimers are increasingly employed

as building blocks in the design of new macromolecular

materials with complex architecture, say by incorporating

them into polymer networks.[17–19] Another recent deve-

lopment concerns dendritic polymers consisting of differ-

ent monomers; an example are copolymeric dendrimers,

consisting of two kinds of monomers. Being constructed

Summary: In this study we extend our previous work con-
cerning the Rouse dynamics of linear alternating copolymers
(Macromolecules 2003, 36, 486) to tree-like structures and
focus on copolymeric dendrimers built from monomers of
two kinds A and B; as before, we let the monomers differ in
their interaction with the solvent. In the framework of
generalized Gaussian structures (GGS), we consider alternat-
ing arrangements of monomers over the dendritic structures.
We develop a semi-analytical method to determine for such
structures (of arbitrary functionality, f, and number of gene-
rations, g), the eigenfrequencies (relaxation times). The
method allows us to compute readily the storage, [G0(o)] and
the loss, [G00(o)] moduli. These quantities show a multi-
tude of features which mainly depend on the difference in the
mobilities, or, equivalently, in the friction coefficients zA and
zB of the A- and B-beads. These features range from the pre-
sence of large plateau-type regions in [G0(o)] to the appear-
ance of double-peaks in [G00(o)]. In contrast to linear
alternating copolymers, the behavior of the dynamic moduli
of copolymeric systems with dendritic topology can shed
light into their composition, i.e. into the relative numbers of
A- and B-beads. We discuss these aspects in view of their
experimental relevance.

A system under study: a dendrimer of third generation (g¼ 3)
with functionality f¼ 3, composed of alternating beads.
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from monomers of different chemical and physical proper-

ties, such macromolecules combine the unique dendrimer

properties with features well-known from the study of

linear and star copolymers.[20–27]

In this work, we study theoretically the viscoelastic

relaxation of copolymeric dendrimers. In an earlier work,

we have evaluated theoretically the dynamics of linear and

cross-linked copolymers in the free-draining limit.[28] Re-

markably, even this rather simple ‘‘free-draining’’ model of

an alternating copolymer chain built from two (A- and B-)

kinds of beads reveals a multitude of new dynamical fea-

tures when the difference in the mobility of the different

kinds of beads is large. These features include the appear-

ance of a plateau-type behavior in the storage modulus and

of an additional peak in the loss modulus.[28] Here we

extend our approach to copolymers whose topology follows

a tree-like, dendrimer pattern. As before,[28] we are mostly

interested in alternating copolymers. In dendrimers this

implies that the A- and B-monomers alternate when going

from a generation to the next. Apart from the fact that such

dendritic copolymers are of general theoretical interest, our

considerations have also a clear experimental motivation:

Such copolymeric dendrimers were recently synthesized,

see e.g. ref.,[21] where the systems reported display along

their bonds, alternatingly, amines and ethers.

On the theoretical side we model our systems through

generalized Gaussian structures (GGS), a method already

used in the study of several classes of polymers.[29–36]

We investigate in how far the presence of different A- and

B-monomers affects the dynamics. In the GGS framework,

the monomers are modeled by beads; these are connected

with each other by elastic springs and undergo viscous fric-

tion in the solvent. Clearly, the GGS approach extends the

familiar Rouse model[37,38] developed for linear chains, by

allowing the structures to be very general; in this way the

beads may have functionalities larger that 2. In a way

similar to the extension of the Rouse to the Zimm model,

one can also incorporate hydrodynamic interactions into

the GGS-formalism. Here, we consider for simplicity free-

draining structures, i.e. we do not take the hydrodyna-

mic interactions into account. We also dispense with

other monomer-monomer interactions, such as leading to

excluded-volume aspects, and with other forces (possibly

attractive or repulsive) between monomers of different

kinds. In this way our treatment is restricted to copolymers

which do not microphase-separate, examples of which

are, for instance, block copolymers of styrene and

a-methyl-styrene[39–42]and polystyrene-block-polyisopro-

pene-block-polystyrene copolymers.[43] Such copolymers

are called homogeneous. Moreover, also the proper choice

of the solvent may lead to copolymer homogeneity.[44,45]

Clearly, the above assumptions simplify our problem. Non-

etheless, even such simplified models lead to complex

features in the mechanical relaxation patterns, as we pro-

ceed to show.

The paper is organized as follows: In the next section we

recall the GGS model and the form of the main dynamical

quantities of interest, namely of the storage G0(o) and of

the loss G00(o) moduli. In the section ‘‘General Method’’ we

show how to determine the eigenvalues (relaxation times)

of dendrimers built from alternating A- and B-monomers.

The section ‘‘Results and Discussion’’ presents G0(o) and

G00(o) for alternating dendrimers whose generation g

ranges from 1 to 8. The paper ends with our ‘‘Conclusion’’.

The Model

As already pointed out, we focus on objects of dendritic

topology, consisting of subunits of two different (A- and B-)

kinds, modeled as beads. In dendritic structures, letting the

beads alternate, automatically leads to an alternation from

generation to generation. All beads are connected to their

neighbors by elastic springs with the same elasticity con-

stant K. The friction constants of the beads differ, however,

being zA and zB respectively.

An example of a dendrimer with alternating beads (or,

equivalently, generations) is shown in Figure 1. The central

bead (core) represents by itself the generation 0, i.e. g¼ 0;

its bead is taken to be of type A, with friction constant zA.

From our assumptions, it follows that all beads which

belong to even generations are of type A and also have zA

as their friction constant. The rest of the beads (belonging

to odd generations) are of type B and their friction constant

is zB.

Now, the Langevin equation of motion for the i-th bead

reads:

zi

dRiðtÞ
dt

þ K
XNtot

j¼1

AijRjðtÞ ¼ f i ð1Þ

Figure 1. A system under study: a dendrimer of third genera-
tion (g¼ 3) with functionality f¼ 3, composed of alternating
beads.
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Here Ri(t) is the position vector of the ith bead, zi is its

friction constant, fi represents the sum of stochastic forces

acting on the ith bead, and Ntot is the total number of beads in

the system. Moreover, A¼ (Aij) is the so-called connectiv-

ity matrix (or Laplace-matrix). For i 6¼ j the element Aij

equals (�1) if the ith and jth beads are connected and is 0

otherwise; Aii equals the number of bonds emanating from

the ith bead.

Of particular interest are the relaxation times tj of the

system, which are related to the eigenvalues lj of Equa-

tion (1) via tj¼ 1/lj. To determine these eigenvalues, it is

sufficient to focus on the homogeneous part of Equation (1),

i.e. to set its right-hand-side to zero. Then we introduce t0

through t0: zA/K and note that t0 is a characteristic

relaxation time of the problem.

Now we can rewrite the homogeneous part of Equation (1)

in the form:

dRiðtÞ
dt

þ ð1=t0Þ
XNtot

j¼1

~AAij RjðtÞ ¼ 0 ð2Þ

by setting

~AAij ¼ siAij ð3Þ

where the si are given by

si ¼
zA

zi

ð4Þ

Note that this transformation leads to the new matrix
~AA ¼ ð~AAijÞ. Now ~AA is obtained from A by multiplying its

rows with si. Given that for the B-beads sB equals zA/zB,

which is, in general, different from unity, the new matrix ~AA
is not symmetric anymore. Nonetheless, as we have shown

in our previous publication,[28] all eigenvalues li of this

matrix are also real and nonnegative. Given that we have

only two kinds of beads, si in Equation (4) can adopt only

two values, namely zA/zA¼ 1 and zA/zB for the A- and the

B-beads, respectively.

An experimentally readily accessible quantity is the

complex dynamic modulus, G*(o), which is usually deter-

mined by applying an external harmonic strain to the sys-

tem. Even more familiar are the storage G0(o) and the loss

G00(o) moduli, which are simply the real and the imaginary

components of G*(o). As discussed before,[28,38] in the

GGS model of Equation (1) and (2), G0(o) and G00(o) are

proportional to the reduced storage and loss moduli:

½G0ðoÞ� ¼ 1

Ntot

XNtot

i¼2

ðotiÞ2

1 þ ðotiÞ2
ð5Þ

and

½G00ðoÞ� ¼ 1

Ntot

XNtot

i¼2

oti

1 þ ðotiÞ2
ð6Þ

the difference between very dilute and dilute solutions be-

ing in general only a matter of different, o-independent,

prefactors; however, in the concentrated regime additional

features (such as entanglements) may enter, which will

change the picture. In the range of validity of Equation (5)

and (6) we are interested in the shapes of G0(o) and G00(o)

and not in their prefactors, and will consider in the follow-

ing only the reduced moduli [G0(o)] and [G00(o)]. In

Equation (5) and (6) we have assumed that the vanishing

eigenvalue is l1, i.e. that l1¼ 0, so that the sum runs only

over the other eigenvalues. As previously discussed, in order

to evaluate Equation (5) and (6) one needs only to know the

relaxation times ti or, equivalently, the eigenvalues l1 of

the linear homogeneous system given by Equation (2).

General Method

As stated, we have to determine the eigenvalues of dendri-

mers consisting of alternating beads. A dendrimer is char-

acterized by its functionality f and by the number g of

generations. The number Ntot of beads of the dendrimer is

then:

Ntot ¼ f
ðf � 1Þg � 1

f � 2
þ 1 ð7Þ

We note that f¼ 3 is the lowest f value which leads to non-

trivial dendrimers; in general we take f to be f> 2. Further-

more, here all beads of even generations are assumed to

have zA as friction constant, whereas all beads of odd gene-

rations have friction constant zB. Figure 1 shows a particular

example for an alternating copolymeric dendrimer, for

which f¼ 3 and g¼ 3.

For true dendrimers, f� 3, we proceed along ideas put

forward by Cai and Chen[7] for f¼ 3 and developed further,

for arbitrary f, in ref.,[36] ref.[46] and ref.[47]. One can namely

categorize the normal modes of the dendrimer into two

groups: (i) modes in which the core is mobile and (ii) modes

in which the core is immobile.[7] In this way we can follow

the procedure of ref.,[36] ref.[46] and ref.:[47]

Mobile Core

Here, as a rule, all beads are involved in the motion. Based

on the structure of the dendrimer (where every inner bead is

connected with one bead from the previous and with f� 1

beads from the next generation), the following equation of

motion holds for the inner beads:

zj

dRj;mðtÞ
dt

þ K fRj;mðtÞ � Rj�1;nðtÞ �
Xf�1

l¼1

Rjþ1;lðtÞ
" #

¼ 0

ð8Þ

Here Rj,m(t) is the position vector of the m-th bead of gene-

ration j, and the sum over l involves the nearest neighbors
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to Rj,m(t) in the generation (jþ 1). For the inner beads the

index j obeys 0< j< g; zj¼ zB if j is odd, and zi¼ zA if j

is even. Using sj¼ zA/zj as in Equation (4), and t0¼ zA/K,

Equation (8) can be written as:

t0

dRj;mðtÞ
dt

þ sj fRj;mðtÞ � Rj�1;nðtÞ �
Xf�1

l¼1

Rjþ1;lðtÞ
" #

¼ 0

ð9Þ

Paralleling the procedure of ref.,[36] one can now sepa-

rate the time dependence and also use a normal mode

expansion. The form is that of Equation (A2) of ref.:[36]

Rj;mðtÞ ¼
X

k

CkFkðj;mÞ expð�lkt=t0Þ ð10Þ

Here Ck are j-independent constant vectors, lk are

the eigenvalues, and Fk(j, m) are the eigenfunctions of

Equation (8). Inserting Equation (10) into Equation (9) we

arrive at (for 0< j< g):

ð�lkÞFkðj;mÞ þ sj

� fFkðj;mÞ � Fkðj � 1; nÞ �
Xf�1

l¼1

Fkðj þ 1; lÞ
" #

¼ 0

ð11Þ

which differs from the corresponding expression,

Equation (A3) of ref.,[36] by the appearance of sj. A further

simplification arises from the symmetry of the dendrimer:

In the case of a mobile core, beads belonging to the

same generation move in the same manner.[7,36,46] Hence

Fk(j, m)¼Fk(j), which reduces considerably the number

of equations to be considered; Equation (11) leads to:

ð�lkÞFkðjÞ þ sj½fFkðjÞ � Fkðj � 1Þ
� ðf � 1ÞFkðj þ 1Þ� ¼ 0

ð12Þ

Additional relations hold for the central bead (j¼ 0) and

for the beads of the last generation, j¼ g:

ð�lkÞFkð0Þ þ fFkð0Þ � fFkð1Þ ¼ 0 ð13Þ

and

ð�lkÞFkðgÞ þ sg½FkðgÞ � Fkðg � 1Þ� ¼ 0 ð14Þ

The coupled system of Equation (12)–(14) is the one

from which one now obtains the eigenvalues. The eigen-

value l1¼ 0 is always present (for it allF1(j) are equal), and

it corresponds to the translation of the GGS as a whole.

Note that the eigenvalues of this group of normal modes are

non-degenerate; this differs from the situation in the case

of an immobile core, to whose discussion we now turn to.

Immobile Core

When the core, or even larger inner portions of the dendri-

mer are immobile, the normal modes can be envisaged as

involving two branches (wedges) moving against each

other.[7,36,46,47] Here a wedge is defined as consisting of an

inner bead and of all its descendants. For a normal mode

in which the core is immobile, but a bead of the first gene-

ration moves, there is another bead of the first generation

moving in the opposite direction. These two moving beads

have each their wedges; inside each wedge again all beads

of the same generation move in the same way. Starting point

of the corresponding system of coupled equations is now a

variant of Equation (12), with Fk(0)¼ 0, so that

ð�lkÞFkð1Þ þ s1½ fFkð1Þ � ðf � 1ÞFkð2Þ� ¼ 0

ð15Þ

whereas all other equations for larger j stay unchanged.

Now, even larger groups of inner beads may be immobile,

say all beads up to generation n, where 1� n< g� 1. Then

the starting equation is based on Equation (12) with

Fk(n): 0, and reads (for 1� n< g� 1):

ð�lkÞFkðn þ 1Þ þ snþ1½ fFkðn þ 1Þ
� ð f � 1ÞFkðn þ 2Þ� ¼ 0

ð16Þ

Finally, when only peripheral beads move, i.e. for

Fk(g� 1): 0, one has from Equation (14):

ð�lkÞFkðgÞ þ sgFkðgÞ ¼ 0 ð17Þ

One may note in Equation (16) and (17) the appearance

ofsj. Focusing on Equation (17) we observe that it describes

a large number of degenerate eigenvalues; they obey l¼ sj,

and hence their value depends on whether g is even or odd.

As a function of n we have with Equation (12), Equa-

tion (14), and Equation (15)–(17) a set of equations which

lead to the complete eigenvalue spectrum for the case of an

immobile core. We note that these eigenvalues are degene-

rate, but that their degeneracy can be easily determined.

Thus, e.g., if a bead next to the immobile core is mobile, its

wedge also moves. We can then choose as independent

normal modes the ones in which this particular bead and,

since the forces on the core are balanced, another one but

only one of the other (f� 1) neighbors of the core (plus its

corresponding wedge) moves. The degeneracy of the cor-

responding eigenvalue is then (f� 1). In the same way, each

immobile bead at the nth stage (n� 1), whose outwards

nearest neighbors are moving, gives rise to (f� 2) indepen-

dent normal modes. To determine the total degeneracy of

normal modes with immobile beads up to and including the

nth generation, we have to multiply the above mentioned

factor (f� 2) with the total number of beads in the nth

generation, namely with f(f� 1)n�1. The total degeneracy

of such modes is hence f (f� 2)(f� 1)n�1.

To conclude, using the theoretical scheme described in

this section makes it possible to get all the eigenvalues of the

copolymeric dendrimer under study in a straightforward

way, even for very large g. It is not difficult to show (see also
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the Appendix) that applying this approach to a dendrimer of

generation g reduces the dynamical problem to solving

polynomials of maximal degree equal to g. Hence, we call

our approach ‘‘semi-analytical’’, because in the case of large

dendrimers we also have to use numerical procedures, but

which only involve finding the roots of polynomials. To

illustrate the method, we apply it in the Appendix to the

cases g¼ 1 and g¼ 2, for which we readily find all the eigen-

values analytically. For larger g one has to evaluate the

roots numerically.

The big advantage of the method just developed is that it

offers a very effective means for obtaining the eigenvalues’

spectrum, method which bypasses the direct diagonaliza-

tion of the corresponding (asymmetric) connectivity matrix,

Equation (3). The method is especially suitable for very

large g, where, because of the exponential increase of Ntot

with g (see also the Appendix), limits on computer time

and, especially, on computer memory render soon a brute-

force diagonalisation (note that we need all the eigenvalues)

unfeasible. Even for moderately large g our method has

advantages, because it can be readily implemented on

small PCs using existing programs, such as MATHEMA-

TICA or MAPLE.

As a check on the precision of our method, we verified

the results obtained with it (values of the eigenvalues and

their degeneracies), through a comparison to the eigenva-

lues which follow from a direct numerical treatment of the

corresponding asymmetric connectivity matrix given by

Equation (3). We used the procedures given in ref.[48] to

determine the eigenvalues: First we employed ‘‘subroutine

balanc’’ to balance the asymmetric matrix under scrutiny;

the idea of balancing is to use similarity transformations to

make corresponding rows and columns of the matrix have

comparable norms, thus reducing the overall norm of the

matrix while leaving the eigenvalues unchanged. Then,

through ‘‘subroutine elmhes’’ we brought the matrix to

Hessenberg form. The eigenvalues were then obtained

through ‘‘subroutine hqr’’, which implements the QR-

algorithm for real Hessenberg matrices. Finally, we sorted

the eigenvalues obtained in ascending order through a

variant of ‘‘subroutine eigsrt’’. The agreement between the

results obtained in this way and those achieved using

Equation (12) and (15) to (17), which are based on the

symmetry of the dendrimers, is extremely good; for dendri-

mers up to the sixth generation we obtain the same eigen-

values, to an accuracy of five digits. It may be worthwhile to

stress that the analytical approach provides all the

eigenvalues; also the degeneracies of the numerically

determined eigenvalues follow precisely our analytical

predictions.

Results and Discussion

We are now ready to apply the formalism discussed above in

order to compute the mechanical moduli, [G0(o)] and

[G00(o)], of dendrimers built from alternating monomers.

We choose trifunctional dendrimers, f¼ 3, because this

class (to which the poly(amidoamine) (PAMAM) dendri-

mers[16,49–51] belong) was much investigated. We focus on

the dependence of [G0(o)] and [G00(o)] on the dendrimer

structure, i.e. on g, and on composition, i.e. on s¼ zA/zB. In

so doing we will also compare the alternating copolymeric

dendrimers to linear alternating copolymers built from the

same A- and B-monomers.

We start with the storage modulus [G0(o)] for a den-

drimer at the sixth generation, g¼ 6, and study the

influence of changes in s, which we let vary from 0.01

to 100. The case s¼ zA/zB ¼ 1 corresponds to the homo-

polymer situation and reproduces what one finds in

the GGS-model for a (f¼ 3, g¼ 6)-dendrimer:[52,53] The

storage modulus [G0(o)] displays a non-scaling (non-

power-law) behavior in the domain of intermediate

frequencies, which correspond to the internal (‘‘intra-

dendrimer’’) relaxation.

Now, even a slight departure of s¼ zA/zB from 1 (by

which one is in a copolymer situation), drastically changes

the [G0(o)]-behavior; larger changes in s lead even to the

appearance of pronounced quasi-plateaus in [G0(o)], see

the [G0(o)]-curves in Figure 2 for s¼ 0.01 and s¼ 100.

Here the plateaus are to the left (to the right) from the curve

with s¼ 1, when s is smaller (larger) than unity. Noting

that we present our results in terms of the dimensionless

frequency ot0, where t0¼ zA/K is the characteristic relax-

ation time of the A-beads, the reason is evident: For s >> 1,

i.e. for zA/zB >> 1, the B-beads are considerably more

mobile than the A-beads, and the response of the system

starts earlier than that of the homopolymeric dendrimer,

s¼ 1. At high frequencies only the B-beads move, whereas

the A-beads are practically immobile. When s >> 1 one

has to go to much lower frequencies, in order to approach

the domain where the A-beads start to move. This scale

separation leads to the plateau in [G0(o)]. On the low fre-

quency scale, at the left of the plateau in the direction of

the terminal relaxation, one finds a domain where [G0(o)]

follows closely the non-scaling behavior of homopoly-

mer dendrimers (s¼ 1). This low-frequency behavior of

[G0(o)] has a simple physical interpretation: On very large

scales (at low frequencies) we are beyond the domain of

the interplay between the two kinds of beads with their

different mobilities. In other words, one sees here a

‘‘coarse-grained’’ behavior, in which the A-beads and the

neighboring B-beads of the next generation combine to a

new entity, a ‘‘coarse-grained’’ homopolymer dendrimeric

object, whose generation number g0 and general function-

ality f0 obey g0 ¼ g/2 and f0 ¼ (f� 1)2þ 1, while the func-

tionality of its core equals f (f� 1). Turning now to the case

s� 1, considerations similar to those expressed above ren-

der clearly that now the plateau appears to the left of the

curve corresponding to the homopolymer dendrimer, see

Figure 2.
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These conclusions are similar to those derived in our

previous study of linear alternating copolymer chains.[28]

The main difference resides here in the fact that for copoly-

meric dendrimers, the plateau values of the storage modulus

[G0(o)] in the extreme cases s� 1 and s >> 1 are not

anymore equal, see Figure 2. This contrasts strongly with

the findings for copolymer chains.[28] To render this point

clear, we display in Figure 3 for the two cases s¼ 0.01 and

s¼ 100 the behavior of [G0(o)] for the dendrimer with

f¼ 3 and g¼ 6, hence where Ntot¼ 190. In the same Figure

we also plot [G0(o)] for an alternating copolymer chain,

where we took Ntot
ch ¼ 191; for symmetry reasons we have

to take Ntot
ch odd and we took it as close as possible to Ntot.

We remark that for the chain the plateau is situated around

0.5, a clear indication that at high frequencies only half of

the beads move (note that a long alternating chain with odd

Ntot contains almost the same number of A- and B-beads). In

the case of dendrimers, the number of beads in each gene-

ration increases exponentially with g; for an alternating

structure one of the species dominates, depending on

whether g is even or odd. Note that for f¼ 3 the number of

beads in the last generation alone (the peripheral beads),

Nper¼ 3� 2g�1, accounts for more than half of the total

number of beads, Ntot¼ 3� 2g�2. Hence, if the central bead

(the core) is of type A, for g even the majority of the beads

are of A-type and for g odd are of B-type. Hence, for a given

g there is an asymmetry between the A- and the B-beads,

asymmetry which becomes clear when one interchanges

the role of the slow beads, as happens for instance by first

taking s¼ 100 and then taking s¼ 0.01. It is this asym-

metry which leads to the observed difference in the plateau

values of [G0(o)] for s¼ 100 and for s¼ 0.01; one should

note that for the same choice of s, the curves for the linear

alternating chains are (for all practical reasons) only shifted

with respect to each other, the shift being due to the fact that

t0 is defined in terms of zA.

Furthermore, the above feature is even more clearly

revealed when one studies the influence of g, the number of

generations, on the storage modulus [G0(o)]. In Figure 4 we

plot [G0(o)] for the particular value s¼ 0.01, which is

small enough to guarantee pronounced plateaus in [G0(o)].

By increasing g from g¼ 3 to g¼ 8, the plots of Figure 4

demonstrate that the plateaus of the [G0(o)] – curves cluster

close to two values, and that they are near the one or the

other value depending on whetherg is even orodd; We recall

that dendrimers with even g consist mainly of A-beads,

whereas the opposite is true for odd g. For our choice of s,

Figure 2. The reduced storage modulus [G0(o)] plotted in
double logarithmic scales versus the reduced frequency ot0.
Shown are results for a dendrimer with f¼ 3 and g¼ 6, for which
the parameter s ranges from 0.01 to 100.

Figure 3. The reduced storage modulus [G0(o)] plotted in double
logarithmic scales versus the reduced frequency ot0. Shown are
results for a copolymeric dendrimer with f¼ 3 and g¼ 6, hence with
Ntot¼ 190 beads, and for an alternating copolymer chain with
Ntot

ch ¼ 191 beads. In both cases the parameter s takes either the
value s¼ 0.01 or s¼ 100. The dashed lines indicate the results for
the linear chain, the solid lines correspond to the dendrimer results.
The triangles stand for s¼ 100, lines with no symbols are for
s¼ 0.01.

Figure 4. The reduced storage modulus [G0(o)] plotted in
double logarithmic scales versus the reduced frequency ot0.
Shown are results for alternating copolymeric dendrimers. The
parameters are f¼ 3 and s¼ 0.01; g ranges from 3 to 8.
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which implies that the A-beads are more mobile than the

B-beads, it follows that the [G0(o)] curves for g even have

their plateau at a lower value than the [G0(o)] curves for

g odd, a fact which is also evident from Figure 4. At very

low frequencies and in the logarithmic scale of Figure 4,

the [G0(o)] get to be parallel to each other, with slope 2;

their position is then mainly determined by the number of

A- and of B-beads. Also this feature is well-obeyed by the

curves in Figure 4.

Now we turn to consider the loss modulus [G00(o)]. As a

general feature, [G00(o)] displays (at least) one maximum,

since it goes as o at small o-values and as o�1 at large

o-values. As we have shown in ref.,[28] the separation of the

scales of motion in copolymer systems may lead both to a

plateau type behavior in the storage modulus [G0(o)] and

also to the appearance of more than one peak in the loss

modulus [G00(o)]. As we proceed to show, this also holds in

the case of dendrimers made out of alternating monomers.

In Figure 5 we display [G00(o)] for copolymeric dendrimers

with f¼ 3 and g¼ 6 (as noted above, such dendrimers

have more A- than B-beads) and for s varying between

0.01 and 100. Again, the cases¼ 1 corresponds to the GGS,

Rouse-type, homopolymeric dendrimer. As in the case of

alternating copolymer chains,[28] we find that also here

[G00(o)] may develop two peaks. The main peak (located

around o¼ 10/t0) corresponds to the A-beads, which are in

majority. The second peak is due to the B-beads and lies

on the left side or on the right side of the main peak,

depending on s, i.e. on the quotient of the mobilities of the

A- and of the B-beads, see Figure 5.

Finally for dendrimers with f¼ 3, we plot in Figure 6 the

loss modulus [G00(o)] for s¼ 0.01, while letting g range

from g¼ 3 to g¼ 8. At such a low s value, one observes

two peaks in [G00(o)]. Again, there is a separation of the

[G00(o)]-curves into two families, depending on whetherg is

even or odd. It is noteworthy that the composition of

the dendrimer is now directly reflected in the relative weight

of the two peaks: The highest peak corresponds to the

energy loss due to the friction against the viscous medium

of the majority of the beads. Thus, the A- and B- compo-

sition of the dendrimers leads to very typical features, both

in [G0(o)] and also in [G00(o)], and may be readily revealed

through mechanical dynamic measurements.

Conclusion

In this work we presented a theoretical study of the mecha-

nical dynamic properties of dendrimers built from mono-

mers (beads) of two different types, which we called A and

B. We performed our analysis in the framework of general-

ized Gaussian structures (GGS) and we assumed (as a first

step), that the A- and B-beads differ only in their friction

constants. The GGS procedure does not include finer as-

pects, such as the influence of the excluded volume or

hydrodynamic interactions. However, the GGS-procedure

allows us to readily treat very large systems and to display

the basic dynamical aspects, while also following our pre-

vious study[28] in which we considered linear alternating

copolymer chains in the framework of the Rouse-model.

Here we take the dendrimers to be made of alternating

monomers, which implies that the A- and B-monomers

alternate from generation to generation; we note that such

substances have been recently synthesized and experimen-

tally investigated.[21]

To treat the dynamics of such copolymeric dendrimers of

an arbitrary functionality, f, and number of generations, g,

we made use of some methods previously developed for

homopolymeric dendrimers and dendritic wedges.[7,36,46,47]

A great advantage of these methods is that they allow us to

avoid the direct, large-scale numerical diagonalization of

the corresponding connectivity matrices. Essentially, the

Figure 5. The reduced loss modulus [G00(o)] plotted in double
logarithmic scales versus the reduced frequency ot0. The para-
meters are as in Figure 2.

Figure 6. The reduced loss modulus [G00(o)] plotted in double
logarithmic scales versus the reduced frequency ot0. The para-
meters are as in Figure 4.
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main idea is to use the underlying symmetry of the dendritic

structure in order to strongly reduce the problem of finding

the eigenvalues of the corresponding connectivity matrix:

The linear system to be treated reduces from being expo-

nential in g (of order (f� 1)g) to being linear in g.

The application of this method to dendrimers built from

trifuctional monomers (f¼ 3) shows that the storage

[G0(o)] and the loss modulus [G00(o)] directly reveal funda-

mental features of the underlying geometry: It turns out that

if the mobilities of the A- and the B-beads differ consider-

ably, then there appear plateaus in the [G0(o)] curves. What

is new here, compared to linear alternating copolymers, is

that changing the s parameter to 1/s, i.e. interchanging the

roles of the A- and the B-beads, does not result in a sym-

metric situation. This asymmetry in behavior reflects the

fact that in dendrimers made of alternating monomers

the type of the beads in majority changes from genera-

tion to generation; this alternation leads to the separation

of the corresponding curves into two families, depending

on whether g is even or odd.

As for the loss modulus [G00(o)], it reflects such changes

in an even more pronounced way than the storage modulus

[G0(o)]. For s very different from unity, say for s¼ 0.01,

such a difference in the A- and the B- mobilities leads to

the appearance of a second peak in [G00(o)]. Remarkably,

the relative height of the two peaks also sheds light into the

A- and B- composition of the dendrimer, since the height of

the peaks is revealing of the number of beads of one kind

involved in the energy dissipation around a given frequency.

Therefore, measurements of the storage and loss moduli

of copolymeric dendrimers can unveil a large number of

structural details, when the underlying building blocks (i.e.

the beads) markedly differ in their properties.

Appendix

Given that in the homopolymer case the analytical deter-

mination of the eigenvalues of the dendrimers can be

pushed quite far,[7,36,46,47] we sketch here the reasons why

the procedure gets difficult in the case of an alternating

arrangement of two monomers species. We take here f to

be arbitrary and consider the cases g¼ 1 and g¼ 2.

(a) g¼ 1. Here there are no inner beads, one has only the

core and f peripheral beads, so that Ntot¼ fþ 1. For a mobile

core one has to solve Equation (13) and (14), which, setting

s1¼ s, we rewrite as:

f � lk �f

�s s� lk

� �
Fkð0Þ
Fkð1Þ

� �
¼ 0

0

� �
ðA1Þ

Setting the determinant in Equation (A1) equal to zero

allows to rewrite the condition for non-trivial solutions as a

characteristic polynomial:

l2 � lðf þ sÞ ¼ 0 ðA2Þ

whose roots are the two, non-degenerate eigenvalues l1¼ 0

and l2¼ fþ s.

When the core is immobile, the single equation still to

be taken care of is Equation (17), which, as discussed in the

main text, leads to the solution l¼ s, which is (f� 1)-fold

degenerate, see section ‘‘General Method’’. Together with

the two previously determined eigenvalues, we have Ntot¼
(fþ 1) eigenvalues, i.e. all of them.

(b) g¼ 2. Here Ntot, the total number of beads, is from

Equation (7) Ntot¼ f2þ 1.

In the case of a mobile core, we have to solve Equation

(12), (13) and (14). The corresponding matrix relation is:

f � lk �f 0

�s sf � lk �sðf � 1Þ
0 �1 1 � lk

0
@

1
A Fkð0Þ

Fkð1Þ
Fkð2Þ

0
@

1
A ¼

0

0

0

0
@

1
A

ðA3Þ

Non-trivial solutions obtain when the determinant of

Equation (A3) vanishes, which leads to the following char-

acteristic polynomial:

ðf � lÞðsf � lÞð1 � lÞ � sf ð1 � lÞ � sðf � 1Þðf � lÞ
� �l3 þ l2ðf þ sf þ 1Þ � lðf þ sf 2 � sf þ sÞ ¼ 0

ðA4Þ

From Equation (A4) one has by inspection the eigenvalue

l1¼ 0; the other two eigenvalues are solutions of the re-

maining quadratic polynomial:

l2;3 ¼ ½ðf þ sf þ 1Þ

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðf þ sf þ 1Þ2 � 4ðf þ sþ sf 2 � sf Þ

q
�=2 ðA5Þ

All three eigenvalues are non-degenerate; their total

number, given as a function of g, is again (gþ 1).

In the case of an immobile core one has now two possi-

bilities: Either the first-generation beads are all immobile or

not. In the first case only the peripheral beads are moving; as

discussed in the section ‘‘General Method’’, the corre-

sponding value for l4 is l4¼ 1, which is f (f� 2)-fold de-

generate. The equations for the second case (where beads of

the last two generations are moving) are Equation (15) and

(16), which lead to

sf � lk �sðf � 1Þ
�1 1 � lk

� �
Fkð1Þ
Fkð2Þ

� �
¼ 0

0

� �
ðA6Þ

The characteristic polynomial is now

l2 � lðsf þ 1Þ þ s ¼ 0 ðA7Þ

which leads to the eigenvalues

l5;6 ¼ ½ðsf þ 1Þ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðsf þ 1Þ2 � 4s

q
�=2 ðA8Þ
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both of them being (f� 1)-fold degenerate. Thus, we have

obtained 3 þ 2ðf � 1Þ þ f ðf � 2Þ ¼ f 2 þ 1 ¼ Ntot eigen-

values, i.e. all of them.

From our procedure it becomes obvious that there is not

much to be gained by continuing analytically in this way,

given that the maximal degree of the characteristic poly-

nomials involved equals (gþ 1) (or g, if one remarks that

the polynomial of highest degree has l1¼ 0 as eigenvalue).

To proceed analytically further, one has to find an additional

symmetry in the system of Equation (12)–(14) and in the

related expressions, Equation (15)–(17), a symmetry which

we did not find so far. As shown by ref.[36], the case s¼ 1 is

more symmetric. Nonetheless, already these relations

drastically simplify the numerical determination of the

eigenvalues; to compute all eigenvalues for a copolymeric

dendrimer of generation g the most arduous task is to find

the roots of polynomials of degree up to g, instead of having

to diagonalize Ntot�Ntot matrices, with Ntot given by

Equation (7), i.e. Ntot	 (f� 1)g. For our part, based on

the equations just mentioned, we calculated for large g the

eigenvalues numerically.
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[5] J. M. J. Fréchet, Science 1994, 263, 1710.
[6] J. Roovers, B. Comanita, Adv. Polym. Sci. 1999, 142, 179.
[7] C. Cai, Z. Y. Chen, Macromolecules 1997, 30, 5104.
[8] R. La Ferla, J. Chem. Phys. 1997, 106, 688.
[9] Z. Y. Chen, C. Cai, Macromolecules 1999, 32, 5423.

[10] F. Ganazzoli, R. La Ferla, G. Terragni, Macromolecules
2000, 33, 6611.

[11] F. Ganazzoli, R. La Ferla, G. Raffaini, Macromolecules
2001, 34, 4222.

[12] G. R. Newkome, C. N. Moorefield, F. Vögtle, ‘‘Dendritic
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