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ABSTRACT: We study theoretically the viscoelastic relaxation of cross-linked copolymers in the framework
of generalized Gaussian structures (GGS), which are extensions of the Rouse model to arbitrary geometries.
The model holds for general homogeneous copolymers under free-draining conditions; it is especially
suitable for treating alternating copolymers. We calculate the storage G′(ω) and the loss G′′(ω) moduli
both for un-cross-linked and for cross-linked copolymer chains, and observe a variety of features:
alternating copolymers differ from homopolymers in the high-frequency domain, where G′′(ω) may display
two maxima. Cross-linking alternating A-B copolymer chains into regular networks (lattices) leads to
the appearance of a network-dominated, low-frequency relaxation domain. In the case of very large
differences in the mobility of the A monomers, of the B monomers, and of the cross-links, G′(ω) is very
structured, displaying three relaxation domains, separated by two plateaus. G′′(ω) shows three peaks.
We expect that these features can be readily detected through appropriate mechanical relaxation
experiments.

1. Introduction

In this work we study the influence of the presence
of different types of monomers, (e.g., A and B) on the
dynamical properties of polymeric networks. By this, we
continue our investigations of the possibilities offered
by the so-called generalized Gaussian structures (GGS)1-8

in the study of polymeric materials. GGS extend the
Rouse model9-11 to arbitrary geometries. The basic idea
behind these Gaussian approaches consists of using a
coarse-grained description of the polymer based on
beads, which are connected to each other by (entropic)
springs. Distinct from the classical Rouse-model, ini-
tially developed for linear chains, GGS allow some of
the beads to be multifunctional; such beads are then
connected to more than two neighbors and represent
construction elements that lead to extended networks.
In this work, we enlarge the analysis of the mechanical
relaxation of such networks by also treating systems
made up from different monomer species. Such theoreti-
cal considerations were performed for linear block
copolymers in a pioneering series of papers12-15 about
three decades ago, see also refs 16 and 17. As a first
step, we will stay in the framework of free-draining
structures, by not (yet) taking hydrodynamic interac-
tions18 into account. Also not considered are specific
monomer-monomer interactions (such as the excluded-
volume or the attraction or repulsion between mono-
mers of different kinds). As we proceed to show, already
this simplified GGS treatment leads to a wealth of
interesting features in the relaxation patterns.

We would like to note from the start that copolymers
are a very important class of materials and that cross-
linked copolymer systems are of particular interest,
because they combine the properties of copolymer
materials with those of polymer networks, leading to

viscoelastic materials with a wide range of technological
applications. Some of their unique properties are related
to the separation of block copolymers on microscopic
scales,19-21 a feature which our version of the GGS
model does not account for. However, one also encoun-
ters homogeneous copolymers, by which one means that
they do not microphase separate. As examples, we
mention here block copolymers of styrene and R-methyl-
styrene22-25 and polystyrene-block-polyisopropene-block-
polystyrene copolymers.26 Homogeneity can also be
achieved by the proper choice of the solvent.27,28

In this paper, we apply the GGS model to cross-linked
copolymers. In general, one has two types of networks.
First, there are physical (transient) networks of gel-
forming copolymer solutions.29-31 The second type of
networks are those attained through chemical reactions,
leading to the formation of permanent cross-links,32-34

such as the copolymerization of styrene with ethylene
glycol dimethacrylate.35

In this work, we focus on the case of permanent cross-
links. In fact, the proposed approach can also be applied
to transient networks (gels) as long as one measures
on time scales smaller than the average lifetime of the
cross-links in the gel. As models for copolymer networks,
we consider regular lattices built from copolymer chains.
In so doing, we generalize some previous works related
to polymer networks.6-8 We work exemplarily with
networks made of copolymer chains, with alternating
beads of -ABAB- type, the motivation being that they
are structures of much interest36-42 and that for them
the question of microphase separationsevidentlysdoes
not arise.

The paper is organized as follows: in the next section,
we develop the mathematical model on which all further
considerations are based, paying particular attention to
the modeling of the different constituents (monomers)
of the network. In section 3, we focus on the relaxation
spectrum of regularly built networks made from copoly-
mer chains. The next two sections are devoted to the
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application of the formalism to chains made of alternat-
ing beads. Section 4 deals with the mechanical relax-
ation of linear, un-cross-linked alternating chains, a
problem which can be treated fully analytically, and
which was previously only numerically solved.12 Section
5 discusses the effects which arise from cross-linking
such alternating chains into regular lattices. In section
6, we end with a short summary and conclusions.

2. The Model

We focus here on the dynamic behavior of polymer
networks, whose main constituents are A and B mono-
mers. In this way the network is built from -AAAA-
and -BBBB- segments such that an A- segment is
connected to a B segment and viceversa. Furthermore,
there also exist multifunctional centers (e.g., crystal-
lites31) to which more than two segments are attached;
these centers are fundamental in the formation of the
network. For simplicity, we assume first that all -AAAA-
segments are similar (i.e., have roughly the same
length) and that the same holds true for the -BBBB-
segments. Then we can, in a coarse-grained description,
go over to view each of these segments as one bead, i.e.,
we have A beads and B beads, respectively. This coarse-
grained procedure leads to alternating copolymers of A
and B beads. A simple situation is presented in Figure
1, in which in part a we indicate such an alternating,
copolymer model chain. In part b of Figure 1, we have
drawn a two-dimensional regular network consisting of
alternating copolymer chains, the junction points being
multifunctional beads of friction constant úC. Given also
the different nature of the -AAAA- and -BBBB-
segments, the A and B beads differ in their dynamical
properties; we will focus here on the possibility that they
have different friction constants, úA and úB. On the other
hand, for simplicity, we take all spring constants K of
the model to be equal. All these features are in line with
the classical work by Hansen and Shen,12 who also
focused in their study of copolymer blocks on such
differences in the frictional coefficients: Hansen and
Shen considered situations in which the ratio úA/úB may
be as large as 10 000; some of their analysis centered
on the úA/úB value of 185, corresponding to the friction

coefficients of polystyrene and poly(R-methylstyrene).12

In this work, we will also span such large ranges of ú
values.

Now, let us outline the measurable relaxation quanti-
ties which we are interested in and which are experi-
mentally accessible. In general, mechanical relaxation
is a well-established technique in polymer physics. In
typical mechanical experiments one measures the com-
plex (shear) modulus G*(ω), as response to a harmonic
strain field. In the framework of the Rouse model, refs
10 and 43 show that for homopolymer chains the
following standard expressions for G′(ω), the real, and
for G′′(ω), the imaginary component of G*(ω), hold:

and

where Ntot is the total number of elements (beads) in
the system under study and τi are the (Ntot - 1) finite
relaxation times of the system. Here we will use the
mechanical relaxation functions in the form of the
reduced storage and loss moduli, [G′(ω)] and [G′′(ω)],
given that we are mostly interested in the shapes of
G′(ω) and G′′(ω), but not in their prefactors. In such a
general form, eqs 1 and 2 are equally applicable to very
dilute solutions as well as to concentrated ones (at least
when entanglement effects are negligible).10,43

It is generally accepted,14,17 based on linear-response
theory and on thermodynamic arguments that eqs 1 and
2 for the storage and loss moduli hold in general; they
hence should be unaffected by polymer chain composi-
tion, such as having beads with different friction
constants. In other words, the standard relations given
by eqs 1 and 2 hold also for copolymer systems, and the
heterogeneity enters only through the relaxation
times.14,17 By this, the problem of determining the
mechanical relaxation of copolymers is reduced to the
eigenvalue problem from which the relaxation times τi
follow.

On the basis of the expressions of ref 10 for the Rouse
model, in the Langevin framework generalized to our
situation here, the position vector Ri(t) of the ith bead
of a copolymer network obeys1,5,6,7,44

where úi is the friction constant of the ith bead, fi the
sum of stochastic forces acting on it, and A ) (Aij) is
the connectivity matrix of the network; see ref 1 and
44 for details. The nondiagonal Aij equals -1 if the ith
and jth beads are connected and 0 otherwise; Aii equals
the number of bonds emanating from the ith bead.
Furthermore, the sets {úi} and {fi} are connected via
the fluctuation-dissipation theorem. Given, however,
that we are interested only in the eigenfrequencies of
the system, which depend solely on A, we do not enter
into these details. It is well-known that in the frame-
work of the Rouse model it is sufficient to focus on the
thermally averaged Cartesian components of {Ri} in

Figure 1. Polymer systems under study: (a) an alternating
copolymer chain containing two kinds of beads; (b) an elemen-
tary cell (dashed line) of a square lattice built from such
(identical) copolymer chains.
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order to get the relaxation spectrum.9,10,14 From now on
we will hence view eq 3 as relating to thermally
averaged variables, under which averaging its right-
hand-side vanishes. We note, furthermore, that eq 3 can
describe the dynamics of geometric patterns which are
much more complex1 than what is shown in Figure 1.
Evidently, incorporating more complex chains creates
no problems, the regular pattern of Figure 1 ensuring
that the GGS dynamics can be computed to high
accuracy,6-8 as we recall in the following.

We now rewrite the above set of Langevin equations,
to recast it into a form similar to that which holds for a
homopolymer system (where for all beads úi has the
same value). For that we consider beads of the first kind
(úA) as reference and have as their characteristic
relaxation time τ0 ) úA/K. For the other kinds of beads
we set

In this way and in the spirit discussed above, we have
for the thermally averaged Ri(t)12,13,14,16,17

with

Here the matrix Ã ) (Ãij) is obtained from A by
multiplying its rows with the σzi corresponding to the
different molecular species zi. Then Ã is, in general, not
symmetric anymore. In this way, the copolymer system
under study differs from a homopolymer system.

However, the eigenvalues of Ã are still real and
nonnegative. This is seen by noticing from eq 6 that Ã
can be written as

where the matrix S is diagonal, its nonvanishing
elements being Sii ) σzi > 0. It follows that all related
matrices such as S-1, S1/2, and S-1/2 exist and are
diagonal. We focus now on the matrix T ) S1/2AS1/2.
Evidently, T is symmetric. Moreover, A is positive-
definite, ∑ij xiAijxj g 0 for all vectors X ) (x1, ..., xNtot)T.
Hence one also has ∑ij xixσzi

Aijxσzj
xj g 0 for all vectors

X, which means that T ) S1/2AS1/2 is also positive
definite. Hence a unitary transformation Q which
diagonalizes T exists

where the diagonal values λi of Λ are real and non-
negative. From eq 8 it follows, by introducing S-1/2S1/2

) 1:

Setting S1/2Q ) Q̃ one thus has Q̃-1ÃQ̃ ) Λ, i.e., Q̃
diagonalizes Ã, and all eigenvalues λi of Ã are real and
nonnegative. From these λi the relaxation times τi
needed in the eqs 1 and 2 follow in a very simple fashion:

Note that the factor 2 in the relaxation times in eq 10
arises from the second moment of the displacements
involved in computing the stress, see the corresponding
derivation of the expressions for the moduli in ref 10.

3. General Method
In this section, we display a general approach to treat

the dynamics of regular lattices whose vertexes are
connected by identical linear copolymer chains; these
have thus an arbitrary sequence of beads of different
kinds. This regularity allows us, based on previous
works,6-8 to simplify the problem using Floquet’s theo-
rem (whose special case in solid-state physics is Bloch’s
theorem45-47).

We focus on a (topologically) two-dimensional square
lattice. The elementary cell of the square lattice is
denoted by a two-component index Ω ) (R,â) where R
and â range from 1 to N. Such a square cell contains a
vertex (a network junction) and two identical copolymer
chains of Nchain beads each; i.e., it consists of Ncell )
(2Nchain + 1) beads, which we number by the index l ∈
{1...Ncell}. The whole network consists then of NcellN2

beads, numbered as (l,Ω) ≡ (l,R,â). In general, we are
not restricted to only two kinds A and B of beads but
may have various species; also the junctions may be
occupied by a different kind of bead, e.g., C. Thus, an
elementary cell (as well as the whole network) may
contain Nsort distinct kinds of beads, Figure 1b. Given
that now this information (originally about úi) is in-
cluded in the elastic term of eq 5, we can proceed in the
same way as for homopolymers,6-8 having only to keep
in mind that now the matrix Ã is nonsymmetric.

We can now simplify the determination of the eigen-
values of Ã by making use of the topological symmetry
of the matrix. Of course, the eigenvalues of Ã are real
and nonnegative, on the general grounds discussed
before. With help of the above notations, we rewrite the
elastic term in the Langevin equations of motion (which
is determined through the topology of the network and
through the set of úi) in the following way:

where we let i f (l,Ω) and j f (m,Ω′). Because of obvious
symmetries, we may set in eq 11, B̃lm

(int) ≡ ÃlΩmΩ and
B̃lm
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value (-b) for B̃lm
(ext)(∆) indicates that the total number

of connections between bead l of cell Ω and bead m of
cell Ω′ ) Ω - ∆ equals b. In the case of a square regular
lattice, the sum over ∆ in eq 12 runs only over nearest-
neighbor cells. Thus, in the 2D square network the cell
Ω ) (R,â) is directly connected to its following four
neighbors: (R - 1,â), (R + 1,â), (R,â - 1), and (R,â + 1);
hence ∆ ∈ {(1, 0),(-1, 0),(0, 1),(0, - 1)}.

Because of the symmetry inherent in eq 12, the
diagonalization of Ã is now quite straightforward. From
a formal point of view, the situation is very close to solid
state physics (Bravais lattice with a basis). However,
one should note that in the arguments leading to eq 12
only the connectivity (a topological feature) enters.
Hence, the networks considered here are not required
to be translationally invariant. Here we have a network
consisting of flexible subunits, whose conformations
change widely under the underlying random Brownian
forces, and hence differ much from cell to cell. Never-
theless, using eq 12, we can proceed quite formally: We
apply periodic boundary conditions to the whole copoly-
mer network and look for solutions to the Langevin
equations of the form6-8

In eq 13, i is the imaginary unit, the Clk are constants,
and the k ) (k1, k2) obey:

where the integers m1 and m2 range from 0 to (N - 1).
Furthermore, the λ(k) denote the different eigenvalues
as functions of the parameter k. Distinct from solid-
state physics, however, here the two-component vector
k simply counts the eigenvalues (modes), and is not
related to a reciprocal wave vector.

Inserting eqs 13 and 14 into the Langevin equations
of motion leads to

where the elements of the matrix B̃(k) ) {B̃lm(k)} are
given by

We remark that the matrices B̃(k) include now (besides
the friction constants) all the information concerning
the topology (connectivity) inside each cell and also the
way in which the cells are connected to each other. For
each realization of the set {úi} inside the unit cell there
are N2 different B̃(k) matrices, in which the exp(- ik‚∆)
terms describe the phase shifts between lattice cells.
According to eq 15 the problem of finding the eigenval-
ues of Ã, which is a (NcellN2) × (NcellN2) matrix, is now
reduced to the related problem of determining the
eigenvalues of N2 different (Ncell × Ncell) matrices.

We close this section by stressing that the derivation
of eq 15 presented here is general and that it holds for
arbitrary bead sequences {úi} of the copolymer chains
involved. Moreover, the 2D square lattice considered

here is only a particular example of a regular lattice.
Our approach can be easily extended to other lattice
types. For instance, all the results of this section are
(given the corresponding, simple changes in eqs 13 and
16 and the comments after eq 12) also valid for a 3D
cubic lattice built from copolymer chains, as well as for
a copolymer chain with repeat units; to describe them,
one simply has to take into account one more compo-
nent, k3, of the vector k (for a 3D lattice) or to ignore
one component, i.e., to set k2 ) 0 (for a 1D lattice). Below
we present an application of this general approach to
linear alternating copolymers and to square networks
cross-linked from such copolymer chains.

4. Alternating Copolymer Chains
At first we apply the general method displayed in the

previous section to an alternating copolymer chain
-ABAB-; see Figure 1a. As parameters σi we have here
σA ) 1 and σB ) úA/úB. The relaxation spectrum of such
an alternating copolymer chain was evaluated previ-
ously, as a special case for alternating block copolymer
chains, using numerical methods.12 In the terminology
of the previous section, such a chain consists of N unit
cells of the form AB. For alternating block copolymers,
the unit cells would have the form (AA‚‚‚AB‚‚‚BB). For
simplicity, we impose first periodic boundary conditions
and close then the chain into a ring; by this we can apply
directly the methods developed above.

According to eq 15 the problem of determining the
eigenvalues of the alternating copolymer ring consisting
of 2N beads of two kinds (A and B) is reduced to the
related problem for the (2 × 2) matrix B̃(k1), which takes
in our case the following form:

where k1 ) 2πm1/N with m1 ) 0, ..., (N - 1), see eq 14.
The relation det(B̃(k1) - λ1) ) 0 leads to the following
quadratic equation for the eigenvalues

from which the eigenvalues λ follow:

One can distinguish here two groups of eigenvalues. The
first group (with k1 * 0) contains (2N - 2) eigenvalues
and involves displacements of the AB unit cells with
respect to each other. The second group (for k1 ) 0) has
two eigenvalues, namely λ ) 0 and λ1 ) 2(1 + σB). The
eigenvalue λ ) 0 corresponds to the displacement (under
the influence of the fluctuating forces) of the copolymer
ring as a whole. The eigenvalue λ1 ) 2(1 + σB) arises
from the motion of the A-B beads against each other.

Using eqs 1 and 2 we can now calculate [G′(ω)] and
[G′′(ω)], the reduced storage and loss moduli of the
alternating copolymer ring. Here and in the following
we work in reduced units and thus plot the results as a
function of ωτ0. In Figure 2, we plot [G′(ω)] as a function
of frequency ω in double logarithmic scales for a
copolymer chain with N ) 500 repeat unit cells, i.e., Ntot
) 1000. We vary the parameter σB ) úA/úB in the range
from 0.01 to 100. The case σB ) 1 (which can be taken
as reference) corresponds to the usual, homopolymer
Rouse ring. We note that for σB ) 1 eq 19 reproduces

RlΩ(t)≡RlRâ(t) )

∑
k1,k2

Clkexp(i[k1R + k2â]) exp(- λ(k)t/τ0) (13)
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N
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-σB(1 + exp[ik1]) 2σB
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λ2 - 2λ(1 + σB) + 2σB(1 - cosk1) ) 0 (18)

λ ) (1 + σB) ( x(1 + σB)2 - 2σB(1 - cos k1) (19)
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the eigenvalues of the Rouse ring.10 In this case, σB )
1, in Figure 2 [G′(ω)] displays a power-law behavior,
[G′(ω)] ∼ ω1/2 over 4 orders of magnitude in ω, which is
bounded by a [G′(ω)] ∼ ω2 domain at low frequencies
and a constant [G′(ω)] domain at high frequencies.
These domains correspond in the time domain to the
so-called terminal and initial ranges, respectively.

Changing σB from 1 leads to drastic changes in the
large ω- domain. Evident is the appearance of an
intermediate plateau for large differences betwen úA and
úB. For instance, for úA . úB, i.e., σB . 1, the B’s are
more mobile than the A’s and the dynamics starts
earlier than in the case of the Rouse chain, composed
of A’s only. The coresponding typical time τ̃ is given by
τ0/[4(1 + σB)], which for σB large is approximately τ0/
(4σB); τ̃ decreases with growing σB and differs strongly
from τ0, as may be verified with the help of Figure 2.
The plateau value of [G′(ω)] lies at 1/2 as befits the fact
that only half of the beads are mobile in this ω-interval.
At longer times (smaller ω) the behavior of [G′(ω)]
parallels that of the Rouse-ring, being shifted as a whole
toward higher ω values. For úA , úB, i.e., σB , 1 the
beads A and B change their roles. This symmetry is
evident in Figure 2, where the curves to the values σB
) R and σB ) 1/R have the same shape and are only
shifted with respect to one another.

Remarkably, the relaxation spectrum of an alternat-
ing copolymer ring leads to even more pronounced
effects in the loss modulus [G′′(ω)]; see Figure 3. Here
we plot the situation for σB ) 1 (the Rouse ring), for σB
) 10 and for σB ) 100. As usual, all curves scale with
[G′′(ω)] ∼ ω at very small ω and with [G′′(ω)] ∼ ω-1 at
very high ω values. For σB ) 1 (the homopolymer case)
[G′′(ω)] shows additionally, as is well-known, the power-
law Rouse behavior [G′′(ω)] ∼ ω1/2 on the left-side of the
unique maximum. Going now to larger σB values leads,
as is evident from Figure 3, to the appearance of a
second maximum at higher frequencies, a feature due
to the B’s, which have a higher mobility. Evidently, the
splitting between the maxima grows with growing σB.
The situation for σB , 1 is, as before, symmetric, in the
sense that the curves corresponding to σB ) R and σB )
1/R have the same form and are just shifted with respect
to each other; we hence dispense from plotting them in
Figure 3.

We finish this section by considering an alternating
copolymer chain with free ends. In this case, we do not
have periodic boundary conditions anymore, so that the
method developed in the previous section does not hold
directly. Since we are interested in the eigenvalues only,
we show in the following that those of an alternating
-ABAB- copolymer chain with free ends are (apart
from a single, special eigenvalue) a subset of those of
an alternating -ABAB- copolymer ring with twice
more beads. The situation is, in fact, very similar to that
of homopolymers, where the eigenvalues for a chain
with Ñ beads are9,10 λchain ) 2(1 - cos k), with k ) πm/Ñ
and m ) 0, 1, ..., (Ñ - 1). As usual, the eigenvalue λ )
0 corresponds to the drift of the chain as a whole. Under
the same conditions, a Rouse ring of 2Ñ beads has as
eigenvalues λring ) 2(1 - cos k), with k ) 2πm/2Ñ )
πm/Ñ and m ) 0, 1, ..., (2Ñ - 1). Thus, the set of
eigenvalues {λring} has only two nondegenerate eigen-
values, namely, λ ) 0 and λ ) 4 (the latter corresponds
to k ) π), whereas all other (2Ñ - 2) eigenvalues are
doubly degenerate, of which thus only (Ñ - 1) are
distinct. These distinct eigenvalues together with λ ) 0
reproduce, in fact, the set of eigenvalues {λchain} of the
Rouse chain.

Now we verify the application of this procedure to the
alternating -ABAB- chain with free ends; i.e., we
compare its eigenvalues to those of an alternating ring
of 2N subunits (i.e., having 4N beads). For such a ring
the spectrum is given by eq 19, now with

and m1 ) 0, 1, ..., (2N - 1). It is clear from the general
approach of section 3 that all normal modes of a system
consisting of repeat unit cells can be classified into two
groups: (i) modes involving the motions of cells against
each other (k1* 0) and (ii) modes without such motions
(k1 ) 0). As before, in the homopolymer case, the class
(i) modes are double degenerated, and each of them
appears exactly once in the spectrum of the alternating
chain with free ends. Moreover, the eigenvalue λ ) 0
(related to the drift of the macromolecule) also appears
both in the alternating chain and in the twice-as-large
ring. We now claim that the last eigenvalue for the
alternating copolymer chain with free ends equals λ1 )
(1 + σB). That this is indeed the case can be seen readily;

Figure 2. Reduced storage modulus [G′(ω)] plotted in double
decadic logarithmic scales vs the reduced frequency ωτ0. Shown
are results for an alternating copolymer ring (Ntot ) 1000).
The parameter σB ranges from 0.01 to 100.

Figure 3. Reduced loss modulus [G′′(ω)] plotted as in Figure
2. Shown are results for an alternating copolymer ring, Ntot )
1000. The parameter σB ranges from 1 to 100.

k1 ) πm1/N (20)
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one has only to verify by insertion that taking the
position vectors RAR(t) and RBR(t) for the A and B beads
in the Rth unit cell in the form

and

(with C being a constant) fulfills the corresponding
Langevin equation when λ1 ) (1 + σB). As a side remark,
we note that λ1 for the alternating copolymer chain does
not (for σB * 1) correspond to any of the three nonva-
nishing, nondegenerate eigenavalues of the twice-as-
large ring; this eigenvalue is sui generis. In the limit
σB f 1 one has λ1 ) 2, a legitimate eigenvalue of the
homopolymer chain, which appeared there from a
double degenerate eigenvalue of the corresponding
homopolymer ring. We note that we have verified our
findings through the direct numerical diagonalization
of Ã matrices for several copolymer chains (up to Ntot )
500) and for their corresponding rings; all the results
obtained confirm that the above analysis is correct. We
also have reproduced the findings of ref 12 (their case
IIIa) for σB ) 185.

We are now in the position to compare the moduli
[G′(ω)] and [G′′(ω)] for an alternating copolymer chain
to those for a ring with the same number of beads. In
Figure 4, we plot [G′(ω)] and [G′′(ω)], both for the chain
and for the ring, taking N ) 500 (Ntot ) 1000) and σB )
100. We notice small differences in the domain of very
small ω (i.e., at long times), close to the domain of the
terminal relaxation. These differences are due to dif-
ferences in the maximal relaxation times. For alternat-
ing copolymers the minimal, nonzero eigenvalue λmin can
be estimated (by expanding eq 19 for small k1) to be:

where kmin is 2π/N for the ring and π/N for the chain,
compare eq 14 and 20. Hence, at an equal number of
beads, for a ring λmin is around four times larger than

for the chain, or written differently, one has τmax
(chain)/

τmax
(ring) = 4, where τmax

(chain) and τmax
(ring) are the maximal

relaxation times of the chain and of the ring, respec-
tively. This explains closely the differences in [G′(ω)]
and [G′′(ω)] at small ω between the rings and the chains;
see Figure 4. We emphasize that these differences occur
at very low frequencies, i.e., very far from the initial
relaxation domain. Therefore, all conclusions drawn in
this domain for the copolymer ring, see Figures 2 and
3, also hold for the corresponding copolymer chain.

5. Cross-Linked, Alternating Copolymers

Now we turn to the viscoelastic dynamic properties
of end-linked networks built from -ABAB- alternating
copolymer chains. Exemplarily, we will study two-
dimensional square lattices made from such chains;
toward the end of the section we will remark on how
different types of lattices affect the results obtained. In
our model we let (see Figure 1) the friction constants
σC of the junctions (network vertexes) differ from those
of the A and B beads, since in many applications such
many-functional points are realized by beads of a
different kind.31,48 This means that we now have (apart
from σA ) 1) two parameters, namely σB and σC. In fact,
we differentiate here between two types of effects, one
being related to the behavior of the copolymer chains
between network junctions, the other type involving the
motion of the junctions.

We start by focusing on the role of the network
junctions; for this, we vary σC ) úA/úC, while setting σB
) 1. At first we note that one of us already considered
the relaxation properties of Rouse chains cross-linked
into regular lattices.49-53 Thus, for σC ) 2 in the case of
the square lattice and σC ) 3 for the cubic lattice, the
relaxation spectrum can be obtained analytically; fur-
thermore, no significant differences appeared in the
numerical study for σC ) 1 for the same lattices.6,7 The
basic aspect of regular networks built from Rouse chains
is that their relaxation spectrum displays two charac-
teristic domains; these correspond to the small-scale
(intrachain) motions and to the large-scale (interchain)
relaxation of the network, respectively. The intrachain
part of the spectrum reproduces closely the spectrum
of single Rouse chains,9,10 i.e., one observes a [G′(ω)] ∼
ω1/2 behavior in this domain. At lower frequencies
(corresponding to the larger-scale motions), [G′(ω)]
crosses over to a [G′(ω)] ∼ ωR behavior, where R depends
on the lattice type considered. In fact R ) d/2, where d
is the lattice dimension; hence, R equals 3/2 for three-
dimensional52-54 and 1 for two-dimensional49-51,54 lat-
tices. We note that for these networks the maximal
relaxation time of the Rouse chains connecting the
vertexes and the minimal relaxation time of the lattice
were found to be equal.49,50,52,53 This leads to a very
smooth behavior of [G′(ω)] and [G′′(ω)] in the region
intermediate between the domains of intrachain and of
interchain relaxation.

Now we return to the case of general σC, while still
keeping σA ) σB ) 1 fixed. Using the methods of section
3, we calculate [G′(ω)] and [G′′(ω)], for a square lattice
of 20 × 20 unit cells, built from Rouse -ABAB- chains
of 100 beads, by evaluating the corresponding eigen-
values. For this, we vary σC. The case σC < 1 corresponds
to having the friction constant úC of the junctions larger
than that (úA ) úB) of the beads of the chains. This
affects strongly, especially for very small σC, the me-
chanical relaxation of the network in the domain

Figure 4. Reduced storage [G′(ω)] and loss [G′′(ω)] moduli
plotted as in Figure 2. Shown are results for a copolymer ring
and for a copolymer chain with free ends, both for σB ) 100
and Ntot ) 1000.

RAR(t) ) C(-1)R(σB)Rexp(-λ1t/τ0) (21)

RBR(t) ) C(-1)R+1(σB)R+1exp(-λ1t/τ0) (22)

λmin =
σB

(1 + σB)
kmin

2 (23)
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intermediate between the intrachain and the purely
lattice relaxation. In Figure 5, we even observe for σC
) 0.001 and for σC ) 0.0001 the appearance of plateau
in [G′(ω)]. Physically, this is due to the separation of
the scales of motion of the network chains and of the
junctions, which, for σC , 1, leads to a large gap in the
relaxation spectrum. We note that such a scale-separa-
tion is very important when modeling the relaxation of
polymer networks analytically.55

For σC > 1 the friction constant of the junctions, úC,
is less than úA ) úB. Nonetheless, the junctions preserve
the interchain connectivity. According to Figure 5,
taking σC . 1 instead of σC ) 1 does not affect the
network’s dynamics in the intermediate frequency
domain. Evident changes are in the low-frequency
domain, where the terminal relaxation is shifted to
higher frequencies. Furthermore, there appears an
additional plateau at high-frequencies, not resolved in
Figure 5, and probably also of difficult experimental
access. Similar effects can be observed in the loss
modulus [G′′(ω)]; see Figure 6. As mentioned, for úC
highly different from úA ) úB one has a gap in the
eigenvalues' spectrum. This is reflected for σC ) 0.0001

by the appearance in [G′′(ω)] of an additional peak on
the small-ω side, when compared to [G′′(ω)] for σC ) 1.
In symmetrical fashion, an additional peak appears for
σC ) 10 000 in [G′′(ω)] on the large-ω side.

As a second step in the analysis we set úC ) úA, i.e.,
σC ) 1, and study the role of the B beads on the network
dynamics. We hence vary σB. In Figure 7 we plot our
numerical results for the reduced storage modulus
[G′(ω)] of a square lattice with 20 × 20 junctions, built
from alternating copolymer chains of 100 beads each.
As was to be expected, in the high-frequency domain
we observe the appearance of plateaus, both for σB , 1
and for σB . 1, whose widths depend on the mismatch
between úA and úB; these results may be compared to
the findings in Figure 2. A major difference appears now
only in the very low- frequency region, before the ω1/2

chainlike behavior; we have there a [G′(ω)] ∼ ω depen-
dence, typical for a 2D lattice. Moreover, we note that
for a 3D regular structure52,53 the power-law would be
ω3/2. This allows us to consider how far our results are
influenced by the choice of the lattice. It turns out that
the influence of different lattices is mainly felt in the
low-frequency domain of [G′(ω)] and [G′′(ω)], where both
quantities scale as ωd/2, d being the dimensionality of
the lattice. The special aspect considered by us here,
namely the fact of having alternating copolymers,
becomes evident at much higher frequencies (i.e., at
shorter times) and is hence not influenced by the type
of lattice chosen for modeling the network.

As the final step of the analysis, we take now both σB
and also σC different from unity. In Figure 8, we plot
the storage modulus, [G′(ω)], and in Figure 9, the loss
modulus, [G′′(ω)], of a square network built from
alternating copolymer chains. Here we take úA, úB, and
úC to be very different, such that σB ) 100 and σC )
0.0001. This leads for [G′(ω)] to two plateaus, as may
be seen from Figure 8. To be able to unravel their nature
we plot in Figure 8 (and also in Figure 9), for compari-
son, the situation for a single alternating copolymer
chain. This allows us to relate the plateau at higher ω
values to the gap in the relaxation spectrum of the
alternating copolymer. The second plateau, at low
frequencies, is hence due to the gap in eigenvalues in
the region intermediate between the relaxation inside
the chains and the relaxation involving the whole
lattice. Thus, we observe here three characteristic

Figure 5. Reduced storage modulus [G′(ω)] plotted as in
Figure 2. Shown are results for alternating copolymers (of 100
beads each) cross-linked into a 20 × 20 square lattice. Here
σA ) σB ) 1, and σC ranges from 0.0001 to 10000; see text for
details.

Figure 6. Reduced loss modulus [G′′(ω)] plotted as in Figure
2, for the same system as in Figure 5. Here σC ranges from
0.0001 to 10000.

Figure 7. Reduced storage modulus [G′(ω)] plotted as in
Figure 2. The same setup is used as in Figure 5, only that
now σA ) σC ) 1 and σB ranges from 0.001 to 1000.

492 Satmarel et al. Macromolecules, Vol. 36, No. 2, 2003



regions of relaxation, separated by plateaus. Indeed, the
corresponding [G′′(ω)] displays under the same condi-
tions three peaks; see Figure 9.

6. Conclusions

In this paper, we presented a theoretical study of
cross-linked copolymers and modeled them in the frame-
work of generalized Gaussian structures (GGS), with
the added feature that beads of different kinds have also
different friction constants. The model consisted of
copolymer chains cross-linked into topologically regular
lattices. We developed a general method for determining
the spectrum of relaxation times for such networks, a
direct extension of the approach previously developed
by us for homopolymer networks.6-8

As an example, we applied this general approach to
polymer networks built from evenly alternating copoly-
mer chains containing two kinds of beads. At first, we
focused on un-cross-linked polymer rings and deter-
mined their relaxation spectrum analytically. We found
that when the difference between the friction constants
of the beads of two kinds (σB ) úA/úB) is sufficiently
large, in the large ω-region the reduced storage (shear)
modulus [G′(ω)] of the copolymer deviates strongly from

the behavior typical for homopolymers: We found that
[G′(ω)] shows a plateau-type behavior in this domain,
due to a large gap in the mobilities of the A and of the
B components. Even more pronounced effects are re-
vealed by [G′′(ω)] where this large difference in mobili-
ties leads to the appearance of an additional peak.

Cross-linking such copolymer chains into regular
lattices leads to additional features in the storage and
loss moduli at low-frequencies, where modes due to the
lattice lead to a ωd/2 scaling behavior. Remarkably, the
most interesting situation occurs when all three kinds
of beads (the A’s, the B’s, and the junctions) have vastly
different mobilities. The storage modulus [G′(ω)] of such
networks has a very structured behavior: One observes
three relaxation regions separated by two plateaus. The
first plateau is in the high-frequency domain and
corresponds to the (above-mentioned) gap in the relax-
ation spectrum of alternating copolymer chains, while
the second plateau is in the intermediate frequency
domain and separates the intrachain relaxation from
the lattice relaxation. Moreover, in this case the loss
modulus [G′′(ω)] shows three peaks. We infer that such
differences in the mobilities of chemically different
species in cross-linked alternating copolymers could be
readily detected through appropriate mechanical relax-
ation experiments.

Considering extensions to more realistic systems one
may include hydrodynamic interactions and also take
excluded-volume effects into account. Staying in the
framework of GGS, one may also consider fluctuations
in the chemical regularity (i.e., use of different beads
to account for different segment lengths, enlargement
of the repeat patterns of the unit cells, etc.) We defer
such extensions to subsequent works.
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