RSC Advances

CORRECTION

Cite this: RSC Adv., 2020, 10, 31316

Correction: Toward realistic computer modeling of paraffin-based composite materials: critical assessment of atomic-scale models of paraffins

Igor V. Volgin, D Artyom D. Glova, Victor M. Nazarychev, Sergey V. Larin, Sergey V. Lyulin and Andrey A. Gurtovenko *

DOI: 10.1039/d0ra90087g

rsc.li/rsc-advances

Correction for 'Toward realistic computer modeling of paraffin-based composite materials: critical assessment of atomic-scale models of paraffins' by Artyom D. Glova *et al.*, *RSC Adv.*, 2019, **9**, 38834–38847. DOI: 10.1039/C9RA07325F.

The authors regret that the 1–4 Lennard-Jones interactions were not accounted for in the molecular dynamics simulations of *n*-eicosane samples with the use of the united-atom GROMOS force field, as required by the original parametrization of this force field.¹ This led to the abnormal behavior of the corresponding systems, namely: the *n*-eicosane samples did not crystallize within the temperature range of 200–450 K. After the 1–4 interactions were turned on, the GROMOS force field allowed us to observe the crystallization of *n*-eicosane with the transition temperature of 270 \pm 1 K, see Fig. 1.

Fig. 1 Mass density of *n*-eicosane samples as a function of temperature for the GROMOS force field, *cf.* Fig. 2(b) of the original publication. The open black squares show the original incorrect data, and the closed red squares correspond to the corrected results. For the sake of comparison, the experimental data^{2.3} is also presented.

Most structural and dynamic characteristics also changed after the 1–4 interactions were properly accounted for. Below we present the updated versions of Tables 1 and 2 of the original publication.

Overall, the GROMOS force field does not show abnormal behavior for the *n*-eicosane sample anymore and performs rather similarly to other united-atom force fields such as *e.g.* PYS. The main conclusions of the original publication remain unchanged since the use of all-atom general-purpose force fields was shown to provide a more realistic description for *n*-eicosane as compared to their united-atom counterparts.

Institute of Macromolecular Compounds, Russian Academy of Sciences, Bolshoi Prospect V.O. 31, St. Petersburg, 199004, Russia. E-mail: a.gurtovenko@gmail.com

Table 1 The crystallization temperature (T_c), the coefficient of volumetric thermal expansion (CTE) measured in the temperature interval 400–450 K, the radius of gyration (R_g), and the end-to-end distance H of n-eicosane chains for different force fields. The corrected data for the GROMOS force field is highlighted in bold

Force field	<i>T</i> _c , К	CTE, 10^{-4} K ⁻¹	$R_{\rm g}, {\rm nm} (T = 250 {\rm K})$	$R_{\rm g}, {\rm nm} (T = 450 {\rm K})$	<i>H</i> , nm ($T = 250$ K)	<i>H</i> , nm ($T = 450$ K)
0.1.FF			a a at		a 4a a a4	
GAFF	330 ± 1	$1/.4 \pm 0.1$	0.75 ± 0.01	0.60 ± 0.01	2.43 ± 0.01	1.70 ± 0.01
GAFF2	365 ± 2	14.3 ± 0.1	0.75 ± 0.01	0.62 ± 0.01	2.43 ± 0.01	1.82 ± 0.01
OPLS-AA	365 ± 1	14.7 ± 0.1	0.74 ± 0.01	0.62 ± 0.01	2.42 ± 0.01	$\textbf{1.80} \pm \textbf{0.01}$
L-OPLS-AA	265 ± 3	12.3 ± 0.1	0.72 ± 0.01	0.57 ± 0.01	2.29 ± 0.01	1.63 ± 0.01
CHARMM36	320 ± 1	12.4 ± 0.1	0.74 ± 0.01	0.59 ± 0.01	2.39 ± 0.01	1.69 ± 0.01
GROMOS	$\textbf{270} \pm \textbf{1}$	$\textbf{9.1} \pm \textbf{0.1}$	$\textbf{0.72} \pm \textbf{0.01}$	$\textbf{0.58} \pm \textbf{0.01}$	$\textbf{2.34} \pm \textbf{0.01}$	$\textbf{1.66} \pm \textbf{0.01}$
NERD	270 ± 1	11.6 ± 0.1	0.74 ± 0.01	0.58 ± 0.01	2.41 ± 0.01	1.64 ± 0.01
OPLS-UA	310 ± 1	7.6 ± 0.1	0.73 ± 0.01	0.57 ± 0.01	2.38 ± 0.01	1.63 ± 0.01
PYS	270 ± 10	9.0 ± 0.1	0.72 ± 0.01	0.55 ± 0.01	2.34 ± 0.01	1.57 ± 0.01
TraPPE	280 ± 1	9.6 ± 0.1	0.74 ± 0.01	0.58 ± 0.01	2.41 ± 0.01	1.65 ± 0.01
Experiment	310 (ref. 4)	8.8-8.9 (ref. 2 and 3)	_	_	2.43 (ref. 5)	—

Table 2 The shear viscosity, the diffusion coefficient and the mass density for *n*-eicosane samples in the liquid state simulated with different force fields at T = 450 K. The corrected data for the GROMOS force field is highlighted in bold

Force field	η , mPa s	$D, 10^{-5} \mathrm{cm}^2 \mathrm{s}^{-1}$	ho, kg m ⁻³
GAFF	0.42 ± 0.04	2.9 ± 0.2	592.3 ± 0.1
GAFF2	0.59 ± 0.01	2.1 ± 0.1	633.5 ± 0.1
OPLS-AA	0.83 ± 0.07	1.6 ± 0.1	668.2 ± 0.1
L-OPLS-AA	0.64 ± 0.08	2.2 ± 0.2	656.4 ± 0.1
CHARMM36	0.60 ± 0.04	2.1 ± 0.2	658.1 ± 0.1
GROMOS	$\textbf{0.52} \pm \textbf{0.01}$	2.7 ± 0.1	$\textbf{690.3} \pm \textbf{0.1}$
NERD	0.32 ± 0.01	3.6 ± 0.1	661.0 ± 0.1
OPLS-UA	0.79 ± 0.02	1.8 ± 0.1	753.1 ± 0.1
PYS	0.53 ± 0.01	2.6 ± 0.1	698.8 ± 0.1
TraPPE	0.45 ± 0.04	2.9 ± 0.1	693.7 ± 0.1
Experiment	$0.594 \ (T = 453 \ { m K})^6$	2.2 $(T = 443 \text{ K})^7$	696.0 $(T = 440 \text{ K})^3$

The Royal Society of Chemistry apologises for these errors and any consequent inconvenience to authors and readers.

References

- 1 L. D. Schuler, X. Daura and W. F. van Gunsteren, J. Comput. Chem., 2001, 22, 1205–1218.
- 2 A. P. Shlosinger and E. W. Bentilla, *Research and development study on thermal control by use of fusible materials, NASA Technical Report, NASA-CR-67695*, 1965.
- 3 W. F. Seyer, R. F. Patterson and J. L. Keays, J. Am. Chem. Soc., 1944, 66, 179–182.
- 4 A. Sharma, V. V. Tyagi, C. R. Chen and D. Buddhi, Renewable Sustainable Energy Rev., 2009, 13, 318-345.
- 5 M. Rubinstein and R. H. Colby, Polymer physics, Oxford University Press, Oxford, 2003.
- 6 P. H. Gross and H. K. Zimmerman, *Rheol. Acta*, 1964, 3, 290–294.
- 7 E. von Meerwall, S. Beckman, J. Jang and W. L. Mattice, J. Chem. Phys., 1998, 108, 4299-4304.