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Abstract
An extensive 100-ns molecular dynamics simulation of lipid bilayer composed of mixture of phosphatidylethanolamine (PE) and phospha-
tidylglycerol (PG) was performed to elucidate the role of PGs to the stability of bacterial membranes. In addition, a control simulation of pure PE
over 150 ns was performed. We observed that PGs decrease both the PE headgroup protrusions into the water phase, and the PE headgroup
motion along bilayer normal. The above effects are caused by stronger inter-lipid interactions in the mixed bilayer: the number of hydrogen
bonds created by PEs is 34% higher in the mixed than in the pure bilayer. Another contribution is due to the numerous ion-mediated inter-lipid
links, which strongly enhance interface stability. That provides a plausible mechanism for preventing lipid desorption from the membrane, for
example, under the influence of an organic solvent. A more compact and less dynamic interface structure also decreases membrane permeability.
That provides a possible mechanism for stabilizing, e.g., bacterial membranes.
� 2008 Elsevier Masson SAS. All rights reserved.
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1. Introduction

In addition to the much studied phosphatidylcholines (PCs),
phosphatidylethanolamines (PEs) and phosphatidylglycerols
(PGs) are among the most common lipids in nature. PEs,
Abbreviations: PC, phosphatidylcholine; PE, phosphatidylethanolamine;

PG, phosphatidylglycerol; POPC, palmitoyloleoylphosphatidylcholine;

POPE, palmitoyloleoylphosphatidylethanolamine; POPG, palmitoyloleoyl-

phosphatidylglycerol; MD, molecular dynamics.
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like PCs, are neutral and zwitterionic under physiological con-
ditions [1]. PEs are present in both eukaryotic and prokaryotic
membranes, participating in a multitude of tasks such as deter-
mining fusion, vesiculation and curvature of bilayers [2e5].
PEs also influence permeation [6], and even processes such
as cell division [7]. Unlike PEs and PCs, PGs are anionic car-
rying a unit negative charge. PGs are primarily present in
higher plants [8], and they are one of the major constituents
of bacterial membranes where the usual amount is around
25% [9]. In Staphylococcus aureus, the PG fraction may be
up to 80% of lipids, whereas in Escherichia coli PEs are dom-
inant with a fraction of about 80% of the lipids [9]. The PG
concentration in eukaryotic membranes is low, but they are
present, e.g., in mitochondria. In red blood cells they consti-
tute about 2% of phospholipids [10].
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Due to the presence of an ammonium group in PE and hy-
droxyl groups in the PG molecule, both lipids are capable in
participating in hydrogen bonding as both hydrogen donors
and acceptors, while PCs can only function as hydrogen ac-
ceptors. PEePE hydrogen bonds have been observed both ex-
perimentally [11,12] and in molecular dynamics (MD)
simulations [13e16]. The presence of PGePG hydrogen
bonds in PG mono- and bilayers is not so obvious; their pres-
ence has been suggested from infrared studies [17,18]. Limited
formation of such bonds has been demonstrated in MD simu-
lations as well [19,20].

Since direct electrostatic interactions between charged spe-
cies are rather strong, PGs, as well as other charged lipids,
function both as membrane stabilizers and destabilizers, and
are believed to play an important role in controlling membrane
peptide/protein interactions [21]. The importance of electro-
static interactions between PGs is stressed by the fact that
main phase transition temperature as well as phase behavior
strongly depend on ionic strength [22,23].

Furthermore, there is strong evidence that bacteria are able
to adjust their relative concentrations of PEs and PGs when
subjected to toxic organic solvents [24,25]. Such an alteration
in headgroup composition seems to be a means for changing
membrane permeability, and hence preserving stability. Mo-
lecular mechanisms responsible for these changes are not
known, however. Studies using model membranes and PGs
have revealed complex effects on vesicle morphology, phase
behavior, and mixing properties of PEePG mixtures [26, 27].

Unlike for PCs, the number of computational studies in-
volving PEs and PGs has been more limited. Properties of
e.g., SOPE and POPE [28,29], DOPE [30], DPPE [15,16],
DLPE [14] and POPG bilayers [20,31] have been studied,
but the number is very limited compared to the abundant stud-
ies of PCs, and no systematic studies exist to our knowledge.
POPEePOPG mixture, the topic of this paper, has recently
been used to model bacterial membranes [32e35]. The current
study goes beyond the earlier ones [32,33] as the time scales
here are almost two orders of magnitude longer providing
the access to the important hydrogen bonding and charge-me-
diated interactions. An excellent review of MD simulations of
charged lipid species and the effect of ions on lipid bilayer
properties is given by Berkowitz et al. [36].

In this paper, we present results from large-scale MD sim-
ulations of a mixed POPEePOPG bilayer in proportion 3:1.
This proportion was chosen as it models bacterial membranes
[32,33]. Our main findings can be summarized as follows:
based on our measurements, we propose that the stability of
bacterial membranes significantly increases due to the pres-
ence of PGs. PGs also decrease protrusions of PE molecules
and reduce their motion along the bilayer normal. These
changes occur due to strong ion-mediated electrostatic interac-
tions, and an increase in inter-lipid hydrogen bonds. Conse-
quences to domain formation in bacterial membranes [37]
and antimicrobial peptides [38] will be discussed at the end
of this paper.

The rest of this paper is organized as follows: in Section 2
we describe the simulation method, protocol and parameters.
In Section 3 we present the results, and we finish with a discus-
sion and conclusions in Section 4.

2. Method

We studied lipid bilayers consisting of 96 POPEs, 32
POPGs, and 3623 water molecules. Since the POPG lipids
are anionic and carry a unit charge, 32 Naþ counterions
were added for charge neutrality. A pure POPE bilayer made
of 128 POPEs and 3655 water molecules was studied as a ref-
erence system; the structures of the POPE and POPG mole-
cules are shown in Fig. 1. The lipid force-field parameters
were taken from the widely used and validated united atom
force-field of Berger et al. [39]. They are based on the GRO-
MOS force-field bonding parameters for lipid headgroups,
with RyckaerteBellemans potential functions [40, 41] for hy-
drocarbon chains. For the LennardeJones interactions, the
OPLS (Optimized Parameters for Liquid Simulations) param-
eters were used [42]. For the hydrocarbon chains, the Len-
nardeJones parameters optimized for long hydrocarbon were
used [39]. For POPE, we used the description by Tieleman
et al. [43] (available at http://moose.bio.ucalgary.ca/), and
for POPG we used the same description (based on the above
parameterization) as in our previous study of a pure POPG bi-
layer [20] (available at http://www.softsimu.org/downloads.
shtml). The SPC (Simple Point Charge) model [44] was
used for water as it is consistent with the above force-field,
and the standard GROMACS force-field parameters were
used for sodium ions.

The simulations were performed in the NpT (constant par-
ticle number, pressure and temperature) ensemble using the
open source GROMACS package [45]. All the LennardeJones
interactions were cut off at 1.0 nm, and the particle-mesh
Ewald (PME) method [46] was used for electrostatics. Lipid
bonds were constrained using the LINCS algorithm [47],
while SETTLE [48] was used for water. The list of non-
bonded pairs was updated every 10 steps. The time step was
set to 2 fs and temperature was kept constant at 310 K using
the weak coupling method [49] with a coupling time constant
of 0.1 ps. Temperature of 310 K was selected since it is phys-
iological temperature and thus of biological interest. The se-
lected lipids are in the fluid phase in that temperature.
Following standard practice, lipids and solvent (water and
ions) were separately coupled to a heat bath. The Berendsen
barostat [49] with a coupling constant of 1.0 ps was employed
(1 bar), and semi-isotropic pressure coupling was used. The
above parameters and the simulation protocol have been
widely used, validated and tested by us and other groups,
see e.g., Refs. [50e54] and references therein.

As the initial structure for the mixed POPEePOPG bilayer,
we used a pre-equilibrated palmitoyloleoylphosphatidylcho-
line (POPC) bilayer [50] where the choline moieties of
POPC lipids were replaced with ammonium and glycerol
groups. The resulting POPEePOPG (POPE) bilayer system
was simulated for 100 (150) ns; the time range from 30 to
100 ns (30 to 150 ns) was used in data analysis. Equilibration
was monitored by using the area per lipid, potential energy and
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Fig. 1. Chemical structures of (a) POPE and (b) POPG molecules.
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temperature which had settled to their equilibrium values after
20 ns. Snapshots of the POPEePOPG system are shown in
Fig. 2.
3. Results
3.1. Characteristics of the membrane systems
We start with a discussion of the system dimensions. In the
pure POPE system the area per lipid was determined to be
0.514� 0.006 nm2. It compares reasonably well with experi-
ments which give about 0.56 nm2 at T¼ 303 K [55] and the
simulations of Mukhopadhyay et al. [56] which give
0.49 nm2 at T¼ 298 K. Unlike for the commonly used dipal-
mitoylphosphatidylcholine (DPPC), there is only a very lim-
ited amount of data available for POPE. Mukhopadhyay
et al. also discuss possible problems in comparing simulations
of POPE with experiments. For the POPEePOPG mixture we
measured 0.510� 0.007 nm2 and in our previous study of the
pure POPG system we found 0.530� 0.006 nm2 [20]. To our
knowledge, there is no experimental data that can be compared
to the mixed system.

We also measure the deuterium order parameter Scd (Fig. 3)
[57]:

Scd ¼
�

3

2

�
cos2 q

�
� 1

2

�

where q is an instantaneous angle between the nth segmental
vector, i.e., (Cn�1, Cnþ1) vector linking n� 1 and nþ 1 carbon
atoms in the acyl chain and the bilayer normal; <.> denotes
both the ensemble and the time averages. As compared to the
pure POPE bilayer, the sn-1 chain of the POPG in the mixed
bilayer shows reduced order at the beginning of the chain.
The PG sn-1 chain is, however, more ordered than in the
case of a pure POPG bilayer.
3.2. Head group orientation and rotation
The orientations of the POPE PeN dipoles are influenced
by the Naþ ions, which bind to the POPE carbonyl oxygen



Fig. 2. Snapshots of (a) the structure of the POPEePOPG bilayer (water not shown for clarity), and (b) configuration of the upper leaflet after 100 ns (each lipid is

represented by the average position of its two carbonyl oxygen atoms. Color scheme: red, POPE; green, POPG; blue, ions; and yellow, lipid-ion ’bonds’). (c)

Structure of four lipids bonding to a Naþ ion.
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O22 in the POPEePOPG system, see Fig. 1 for the numbering
of atoms. To study this, POPEs were divided into two cate-
gories: those bound to a Naþ ion and those not. We define
a POPEeNaþ pair bound if the lifetime of the ’bond’ exceeds
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Fig. 3. Deuterium order parameters SCD of sn-1 (a) and sn-2 (b) chains of

POPE and POPG in pure POPE, pure POPG, and POPE/POPG bilayers.
half of the whole trajectory. We found that about 1/3 of POPEs
were bound during the simulation run. The average angle be-
tween the bilayer normal and the PeN vector was 87� � 4� for
bonded and 96� � 2� for non-bonded PEs. Hence, binding to
an ion reorients the PeN dipole toward the water phase. The
orientation of the PeN dipoles in the pure POPE system
was found to be 92� � 1�. That is, within the error bars, the
same as the average value in the POPEePOPG system
(93� � 3�). That may be the result of a balance between ion
bonding, hydration, and inter-lipid hydrogen (H) bonds. Con-
sistenly with previous studies, the effect of Naþ ions on the
POPG head group orientation was found to be negligible [20].

To examine the effect of ion bonding on headgroup rota-
tion, we calculated the reorientational autocorrelation function
(RAF) of the PeN vector for the first Legendre polynomial of
the ion-bonded and non-bonded POPE headgroups both in the
mixed POPEePOPG and the pure POPE bilayers (Fig. 4). As
can be seen in Fig. 4, the rotation of PE headgroups is slower
in the mixed bilayer including both bonded and non-bonded
PEs. However, the dynamics of the bonded headgroups is
more influenced than those of non-bonded PEs. We can con-
clude that head group rotation is influenced both by ion bond-
ing and H-bonds (see Section 3.4)
3.3. Interactions with ions
In the POPEePOPG system, the Naþ ions interact actively
with the carbonyl oxygen atoms, especially with the POPG
ones. To characterize those interactions, the radial distribution
functions (RDFs) of Naþ ions relative to the various lipid ox-
ygen atoms and water oxygens are shown in Fig. 5. The coor-
dination numbers around a Naþ ion (that is, the average
number of atoms within the first hydration shell of an ion,
see [20]) were found to be 3.28, 1.10, 0.80, 0.06, 0.01, 0.11,
and 0.03 for water oxygen atoms (errors are less than 0.03),
POPE carbonyls (O22, O32), POPG carbonyls (O22, O32),
POPE phosphodiester oxygen atoms (O13, O14), POPG
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phosphodiester oxygen atoms (O13, O14), O15 (POPG), and
O16 (POPG), respectively. The sodium ions prefer to interact
with the POPG carbonyl oxygen atoms since each POPE car-
bonyl oxygen atom binds only 0.37 sodium ions, while each
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Fig. 5. Radial distribution functions (RDF) of phosphodiester and carbonyl

oxygen atoms of POPE and POPG with Naþ ions (a); and with POPE nitrogens

(bottom) in the POPEePOPG system (b). See Fig. 1 for numbering of atoms.
POPG binds 0.80. In addition, the two carbonyl oxygen atoms
of both POPE and POPG show different occurrence around
Naþ ions. The coordination numbers of O22 and O32 of
POPE around a Naþ ion were found to be 0.70 and 0.39, re-
spectively. For POPG, the relative coordination numbers are
0.58 and 0.22.

Ions can link two lipids together by forming ’bridges’. We
define an ion bridge to exist when a carbonyl oxygen atom
(O22, O32) is within the first hydration shell (0.33 nm [20])
of a Naþ ion. We chose this definition, since bonding between
Naþ ions and carbonyl oxygen atoms is more stable and fre-
quent in comparison to interactions between the Naþ ions
and other lipid oxygen atoms. It is also possible to consider
all lipid oxygen atoms as binding sites available for ion
bridges [36]. We found 60� 6 ionelipid pairs, which lead
to the formation of 13� 1 ionelipid clusters. An ionelipid
cluster is defined to be a connected network of lipids, which
are bound together by ion bridges. Distribution of the cluster
sizes is shown in Fig. 6a. A snapshot of a cluster (viewed
from the water side) is shown in Fig. 2b. As compared with
POPEs, there are more POPGs which bind to two Naþ ions.
Majority of Naþ ions were found to interact with three or
four lipids. To illustrate this, the fractions of ions bonded to
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different number of ions are shown in Fig. 6b. A snapshot of
four lipids bonded to one Naþ is shown in Fig. 2c.

Concluding, the introduction of PGs and related counterions
to a PE bilayer gives rise to strong bonding and formation of
stable ionelipid clusters, this will be discussed in detail below.
3.4. Lipidelipid and lipidewater hydrogen bonding
0.1

0.2a
To determine whether a H-bond exists, we used the com-
mon definition: the distance r between the hydrogen and an ac-
ceptor has to be r� 0.25 nm, and the donor-hydrogen acceptor
angle must be a� 30 [58]. As for lipidelipid H-bonds,
a POPE participates, on average, in 1.27 H-bonds in the mixed
bilayer (0.79 with other PEs and 0.48 with PGs; H-bonds with
PGs include 0.40 bonds where the H donor is the PE ammo-
nium group, and 0.08 where the H donor is the PG O16-
H16 group) and only in 0.95 H-bonds in the pure POPE bila-
yer (errors are less than 0.02). A POPG, in turn, participates in
1.55 H-bonds (1.44 with PEs and 0.11 with PGs; H-bonds with
PEs include 1.20 bonds where the H donor is a PE and 0.24
where the H donor is PG), and only in 0.36 H-bonds in
a pure POPG bilayer [20]. Detailed numbers of H-bonds be-
tween the different groups of POPE and POPG molecules
are given in Table 1.

Lipids also H-bond with water molecules. The POPE car-
bonyl oxygen atoms (O22 and O32) H-bond to 1.35 water
Table 1

Average number of intermolecular and intramolecular hydrogen bonds in

POPEePOPG and POPE bilayers

H donor H acceptor Intermolecular Intramolecular

POPEePOPG bilayer

N (PE) O12 (PE) e 1.00� 0.00

N (PE) O13, O14 (PE) 0.49� 0.04 e

N (PE) O22 (PE) 0.24� 0.03 0.13� 0.03

N (PE) O32 (PE) 0.06� 0.02 0.03� 0.01

N (PE) O13, O14 (PG) 0.16� 0.03 e
N (PE) O15 (PE) 0.10� 0.02 e

N (PE) O16 (PE) 0.03� 0.02 e

N (PE) O22 (PE) 0.08� 0.01 e

N (PE) O32 (PE) 0.03� 0.01 e

O15 (PG) O12 (PG) e 1.00� 0.00

O16 (PG) O11 (PG) e 0.02� 0.02

O16 (PG) O12 (PG) e e
O16 (PG) O13, O14 (PG) 0.01� 0.01 e

O16 (PG) O15 (PG) 0.01� 0.01 0.04� 0.03

O16 (PG) O16 (PG) 0.01� 0.01 e

O16 (PG) O21 (PG) e 0.03� 0.01

O16 (PG) O22 (PG) 0.06� 0.03 0.01� 0.01

O16 (PG) O31 (PG) e e

O16 (PG) O32 (PG) 0.02� 0.02 0.01� 0.01

O16 (PG) O13, O14 (PE) 0.03� 0.03 e

O16 (PG) O22 (PE) 0.16� 0.05 e

O16 (PG) O32 (PE) 0.05� 0.04 e

POPE bilayer

N (PE) O13, O14 (PE) 0.63� 0.05 e

N (PE) O22 (PE) 0.26� 0.03 0.18� 0.03

N (PE) O32 (PE) 0.07� 0.02 0.01� 0.01

The errors are standard error estimates.
molecules in the mixed bilayer, and to 1.78 in the pure
POPE bilayer. Thus, the observed dehydration is likely due
to bonding. A POPG binds to 0.97 water molecules in the car-
bonyl region in the mixed bilayer and to 0.63 in a pure POPG
bilayer [20]. Other lipid oxygen atoms were found to bind to
a similar number of water molecules both in mixed and pure
bilayers.

Concluding, the introduction of PGs and related counter-
ions to a PE bilayer leads to an increase in intermolecular
H-bonding (34% more H-bonds per PE) and to a decrease in
hydration in the carbonyl region of the bilayer. This may
also have other consequences as the area per lipid of a mixed
PCePOPG bilayer has been shown to depend on hydration
(together with the mixing ratio) [59].
3.5. Water ordering and electrostatic potential
Ordering of water molecules in the vicinity of the water/
membrane interface can be characterized by the time averaged
projection of the water dipole unit vector onto the interfacial
normal [20]. The results are shown in Fig. 7a, which shows
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that the water molecules are less ordered in the carbonyl oxy-
gen region of the mixed POPEePOPG than in the pure POPE
bilayer.

To a large extent, the electrostatic potential determines the
permeability of ionic solutes through the lipid bilayer. Hence,
to calculate the electrostatic potential across the bilayer, the
average charge density profile was first computed, the bilayer
center being assigned to z¼ 0 for each simulation frame.
Then, the electrostatic potential was determined by integrating
the charge density twice with the initial condition V
(z¼ 0)¼ 0 [50,51]. Fig. 7b shows the electrostatic potential
profiles of pure POPE, pure POPG, and POPE/POPG systems.
The potential differences between the interior of bilayer and
the water phase are, respectively, �0.58, �0.51, and
�0.59 mV.
3.6. Protrusions characterized by POPE
glycerol backbone
Protrusions, i.e., extensions of a lipid or lipids outward to
the water phase are an important characteristic of membranes
as they tell about the hydrophobic thickness and its fluctua-
tions, but they are relatively difficult to characterize experi-
mentally as well as in a simulation. Protrusions may be due
to single lipid or they may be collective [60,61]. Here, we fo-
cus on the former. Here, we describe protrusions by measuring
the partial distributions of the nitrogen atoms in the z-direction
and, as a second characteristic, we study the positional auto-
correlation functions in the z-direction using the local neigh-
borhood of the lipid as a reference. These measures
characterize the amount and lifetime of fluctuations in the z-di-
rection. Ideally, free energy [60] should be used but it was not
possible here. The distribution of the nitrogen atoms in the two
systems is shown in Fig. 8. It has a slightly narrower distribu-
tion in the mixed bilayer as compared with the pure POPE bi-
layer. This suggests that the protrusions in the mixed bilayer
are suppressed as compared with the pure bilayer. To examine
that better, we calculated the autocorrelation functions for the
positions of the glycerol groups along the bilayer normal with
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Fig. 8. Partial densities of the nitrogen atoms (bilayer is centered at 0 nm).
respect to their neighborhood, see Fig. 9. The neighborhood
was defined as molecules with their centers of mass at a dis-
tance <1 nm. The z-position was then calculated with respect
to the average z-position of the neighborhood. Fig. 9 indicates
a slower motion in the direction of the bilayer normal in the
mixed bilayer.
4. Discussion

We have studied the properties of POPEePOPG bilayers to
elucidate the role of charged PG lipids on the stability of bac-
terial membranes. Key results of this study are shown in Figs.
8 and 9. The distribution of nitrogens is sharper in the mixed
bilayer than in the pure POPE system (Fig. 8); that indicates
a more compact bilayer interfacial region and less lipid protru-
sions into the water phase. Decrease in protrusions is associ-
ated with slower dynamics in the interface as shown in Figs.
4 and 9. Both phenomena contribute to increased membrane
stability by preventing lipid desorption from the membrane,
for example, under the influence of an organic solvent, thus
preventing the membrane from disintegrating. A more com-
pact and less dynamic structure of the interface should also de-
crease membrane permeability. To our knowledge such
a mechanism of stabilizing bacterial membranes by PG has
not been previously proposed.

Our data suggest that the atomic level mechanism responsi-
ble for the decrease of protrusions and the dynamics of head-
groups is related to the strong bonding between PEs and PGs.
This is realized through H-bonds and ion bridges. As for H-
bonds, the PE ammonium group preferentially H-bonds with
the PG phosphodiester oxygen atoms. Due to this, the total
number of H-bonds created by the ammonium groups is in-
creased by about 30% in comparison with the pure POPE bi-
layer. Additionally, PEs are H-bonded with POPGs via the PG
hydroxyl groups. Similar H-bonding and water mediated
bonding (water bridges) between PEs and PGs have been
shown in a previous study of a POPEePOPG bilayer [33].
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The second mechanism responsible for the decrease of pro-
trusions is due to ion binding and the formation of ion bridges
between PEs and PGs. Fig. 2a shows that most of the ions are
bonded in the interface. That causes local dehydration as water
bridges are replaced by much stronger ion links. The lifetime
of ion links is much longer than that of water bridges e many
ions were bonded for more than half of the simulation time,
some of them even for the whole simulation (70 ns). For com-
parison, the lifetime of water bridges is of the order of 100e
200 ps [62].

Let us finish by discussing some aspects related to the
wider importance of our results. In eukaryotic membranes
the issue of domains, in particular rafts [63], has been one
of the most discussed topics. In bacterial membranes, do-
mains have received much less attention although they do ex-
ist [37]. In mammalian cells, cholesterol, saturated PCs and
sphingomyelin are the main components in rafts, but in the
latter, domains have been mostly associated with PE and car-
diolipin, which is negatively charged. PEs have been sug-
gested to be the key component [37] due to their small
head group size and H-bonding capabilities. Our results
show in detail that PEs bond strongly with PGs, and hence
it is very reasonable to expect that to be the case with cardi-
olipin as well e it seems also plausible to have domains in
PEePG dominated systems, although we are not aware of
such experiments. As discussed above, the total number of
H-bonds by the PE ammounium groups significantly
increases when PG is added in a pure PE bilayer. As also
discussed above, ion bridges mediate further PEePG interac-
tions at the wateremembrane interface. Thus, our studies
show the detailed microscopic mechanisms, which may be
responsible for domain formation in bacterial membranes.
Simulating systems so large that one would be able to see
the formation and dissociation of such domains is currently
beyond any computational capabilities.

Finally, lipid charge, in particular that of PGs, together
with variation of the hydrophobic chain length, has been
shown [38] to be an important factor in the disruption of
lipid membranes when exposed to certain antimicrobial pep-
tides. One possibility, although cannot be verified here, is
that the penetration of the peptide breaks the H-bond and
ion bonding network and that may trigger destabilization
of the membrane, e.g., due to like-charge interactions.
Whether or not that is the case will be left as a topic for fur-
ther studies.
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